Patents by Inventor David W. Paglieroni

David W. Paglieroni has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230306085
    Abstract: A system is provided for background suppression and anomaly detection/classification in a sensor data field using an omnidirectional stochastic technique to expose anomalies. For each element in the sensor data field, the system identifies neighborhoods of elements that cover the various nearby parts of the sensor data field in all directions. At a specified statistical significance level for background, the system considers the element to be background if it is statistically insignificant relative to the elements in any one of the surrounding neighborhoods. The system exposes anomalous objects by applying an attenuation coefficient near zero to those background elements. The system grows anomalous objects from seed elements that correspond to local peaks in the background-suppressed sensor data field. The system can be trained to jointly learn an effective statistical significance level for background suppression and the parameters for classifying objects as of interest or not of interest.
    Type: Application
    Filed: March 25, 2022
    Publication date: September 28, 2023
    Inventor: David W. Paglieroni
  • Patent number: 11670036
    Abstract: An automatic threat recognition system and method is disclosed for scanning the x-ray CT image of an article to identify the objects of interest (OOIs) contained within the article, which are otherwise not always quickly apparent or discernable to an individual. The system uses a computer to receive information from two-dimensional (2D) image slices from a reconstructed computed tomography (CT) scan image and to produce a plurality of voxels for each slice of the 2D image. The computer analyzes the voxels to create a likelihood map (LM) representing likelihoods that voxels making up the CT image are associated with a material of interest (MOI). The computer further analyzes the LM to construct neighborhoods of voxels within the LM, and classifies each voxel neighborhood based on its features, thereby decluttering the LM to facilitate the process of connecting voxels of a like MOI together to form segments.
    Type: Grant
    Filed: July 14, 2020
    Date of Patent: June 6, 2023
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: David W. Paglieroni, Harry E. Martz, Jr.
  • Patent number: 11573575
    Abstract: A system for determining a travel direction that avoids objects when a vehicle travels from a current location to a target location is provided. The system determines a travel direction based on an attract-repel model. The system assigns a repel value to the object locations and an attract value. A repel represents a magnitude of a directional repulsive force, and the attract value represents the magnitude of a directional repulsive force. The system calculates an attract-repel field having an attract-repel magnitude and attract-repel direction for the current location based on the repel values and their directions and the attract value and its direction. The system then determines the travel direction for a vehicle to be the direction of the attract-repel field at the current location.
    Type: Grant
    Filed: April 12, 2017
    Date of Patent: February 7, 2023
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: David W. Paglieroni, N. Reginald Beer, David Chambers
  • Patent number: 11403765
    Abstract: An automatic threat recognition (ATR) system is disclosed for scanning an article to recognize contraband items or items of interest contained within the article. The ATR system uses a CAT scanner to obtain a CT image scan of objects within the article, representing a plurality of 2D image slices of the article and its contents. Each 2D image slice includes information forming a plurality of voxels. The ATR system includes a computer and determines which voxels have a likelihood of representing materials of interest. It then aggregates those voxels to produce detected objects. The detected objects are further classified as items of interest vs. not of interest. The ATR system is based on learned parameters for a novel interaction of global and object context mechanisms. ATR system performance may be optimized by using jointly optimal global and object context parameters learned during training. The global context parameters may apply to the article as a whole and facilitate object detection.
    Type: Grant
    Filed: August 14, 2019
    Date of Patent: August 2, 2022
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: David W. Paglieroni, Christian T. Pechard, Harry E. Martz, Jr.
  • Publication number: 20220020203
    Abstract: An automatic threat recognition system and method is disclosed for scanning the x-ray CT image of an article to identify the objects of interest (OOIs) contained within the article, which are otherwise not always quickly apparent or discernable to an individual. The system uses a computer to receive information from two-dimensional (2D) image slices from a reconstructed computed tomography (CT) scan image and to produce a plurality of voxels for each slice of the 2D image. The computer analyzes the voxels to create a likelihood map (LM) representing likelihoods that voxels making up the CT image are associated with a material of interest (MOI). The computer further analyzes the LM to construct neighborhoods of voxels within the LM, and classifies each voxel neighborhood based on its features, thereby decluttering the LM to facilitate the process of connecting voxels of a like MOI together to form segments.
    Type: Application
    Filed: July 14, 2020
    Publication date: January 20, 2022
    Inventors: David W. PAGLIERONI, Harry E. MARTZ, JR.
  • Publication number: 20210049767
    Abstract: An automatic threat recognition (ATR) system is disclosed for scanning an article to recognize contraband items or items of interest contained within the article. The ATR system uses a CAT scanner to obtain a CT image scan of objects within the article, representing a plurality of 2D image slices of the article and its contents. Each 2D image slice includes information forming a plurality of voxels. The ATR system includes a computer and determines which voxels have a likelihood of representing materials of interest. It then aggregates those voxels to produce detected objects. The detected objects are further classified as items of interest vs. not of interest. The ATR system is based on learned parameters for a novel interaction of global and object context mechanisms. ATR system performance may be optimized by using jointly optimal global and object context parameters learned during training. The global context parameters may apply to the article as a whole and facilitate object detection.
    Type: Application
    Filed: August 14, 2019
    Publication date: February 18, 2021
    Inventors: David W. PAGLIERONI, Christian T. PECHARD, Harry E. MARTZ, JR.
  • Publication number: 20200117220
    Abstract: A system for determining optimal paths without collision through a travel volume for a swarm of vehicles is disclosed. The system determines a travel path for the swarm leader vehicle using a minimal cost path derived from various measures of environmental cost for avoiding objects in traveling from leader location to target location. The system also determines, for each empty neighbor location of each follower vehicle, relational costs for follower vehicle travel relative to leader vehicle travel. The various measures of relational cost seek to maintain a prescribed positional relationship between each follower vehicle and the leader vehicle given the leader vehicle travel path. Based on various measures of environmental and relational cost, the system determines the best travel path for the each follower vehicle relative to the leader vehicle.
    Type: Application
    Filed: April 12, 2017
    Publication date: April 16, 2020
    Inventors: David W. Paglieroni, N. Reginald Beer, David Chambers
  • Publication number: 20200117211
    Abstract: A system for determining a travel direction that avoids objects when a vehicle travels from a current location to a target location is provided. The system determines a travel direction based on an attract-repel model. The system assigns a repel value to the object locations and an attract value. A repel represents a magnitude of a directional repulsive force, and the attract value represents the magnitude of a directional repulsive force. The system calculates an attract-repel field having an attract-repel magnitude and attract-repel direction for the current location based on the repel values and their directions and the attract value and its direction. The system then determines the travel direction for a vehicle to be the direction of the attract-repel field at the current location.
    Type: Application
    Filed: April 12, 2017
    Publication date: April 16, 2020
    Inventors: David W. Paglieroni, N. Reginald Beer, David Chambers
  • Patent number: 10007996
    Abstract: A detection system that detects subsurface objects within a medium and estimates various features of the objects is provided. The detection system receives a streaming sequence of image frames of the medium at various along-medium locations. An image frame contains voxel values (intensities) representing characteristics of the medium across the medium and in the depth (range) direction. The detection system depth-compensates the intensities for determining which voxels are part of an object using an unsupervised binary classifier. The detection system then connects object voxels into distinct objects and recursively estimates the features of those objects as the image frames stream based on the locations and intensities of the object voxels.
    Type: Grant
    Filed: March 2, 2015
    Date of Patent: June 26, 2018
    Inventors: David W. Paglieroni, N. Reginald Beer
  • Publication number: 20160260222
    Abstract: A detection system that detects subsurface objects within a medium and estimates various features of the objects is provided. The detection system receives a streaming sequence of image frames of the medium at various along-medium locations. An image frame contains voxel values (intensities) representing characteristics of the medium across the medium and in the depth (range) direction. The detection system depth-compensates the intensities for determining which voxels are part of an object using an unsupervised binary classifier. The detection system then connects object voxels into distinct objects and recursively estimates the features of those objects as the image frames stream based on the locations and intensities of the object voxels.
    Type: Application
    Filed: March 2, 2015
    Publication date: September 8, 2016
    Inventors: David W. Paglieroni, N. Reginald Beer
  • Patent number: 9361352
    Abstract: A method and system is provided that applies attribute- and topology-based change detection to objects that were detected on previous scans of a medium. The attributes capture properties or characteristics of the previously detected objects, such as location, time of detection, detection strength, size, elongation, orientation, etc. The locations define a three-dimensional network topology forming a constellation of previously detected objects. The change detection system stores attributes of the previously detected objects in a constellation database. The change detection system detects changes by comparing the attributes and topological consistency of newly detected objects encountered during a new scan of the medium to previously detected objects in the constellation database. The change detection system may receive the attributes of the newly detected objects as the objects are detected by an object detection system in real time.
    Type: Grant
    Filed: January 23, 2013
    Date of Patent: June 7, 2016
    Assignee: Lawrence Livermore National Security, LLC
    Inventor: David W. Paglieroni
  • Patent number: 9239382
    Abstract: A system that applies attribute and topology based change detection to networks of objects that were detected on previous scans of a structure, roadway, or area of interest. The attributes capture properties or characteristics of the previously detected objects, such as location, time of detection, size, elongation, orientation, etc. The topology of the network of previously detected objects is maintained in a constellation database that stores attributes of previously detected objects and implicitly captures the geometrical structure of the network. A change detection system detects change by comparing the attributes and topology of new objects detected on the latest scan to the constellation database of previously detected objects.
    Type: Grant
    Filed: August 26, 2011
    Date of Patent: January 19, 2016
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: David W. Paglieroni, N. Reginald Beer
  • Patent number: 9086501
    Abstract: A polarized detection system performs imaging, object detection, and change detection factoring in the orientation of an object relative to the orientation of transceivers. The polarized detection system may operate on one of several modes of operation based on whether the imaging, object detection, or change detection is performed separately for each transceiver orientation. In combined change mode, the polarized detection system performs imaging, object detection, and change detection separately for each transceiver orientation, and then combines changes across polarizations. In combined object mode, the polarized detection system performs imaging and object detection separately for each transceiver orientation, and then combines objects across polarizations and performs change detection on the result.
    Type: Grant
    Filed: January 23, 2013
    Date of Patent: July 21, 2015
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: N. Reginald Beer, David W. Paglieroni
  • Patent number: 8854249
    Abstract: A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes the return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.
    Type: Grant
    Filed: August 26, 2011
    Date of Patent: October 7, 2014
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: David W. Paglieroni, N. Reginald Beer
  • Patent number: 8854248
    Abstract: A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes the return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.
    Type: Grant
    Filed: August 26, 2011
    Date of Patent: October 7, 2014
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: David W. Paglieroni, N. Reginald Beer, Steven W. Bond, Philip L. Top, David H. Chambers, Jeffrey E. Mast, John G. Donetti, Blake C. Mason, Steven M. Jones
  • Patent number: 8754802
    Abstract: A system that applies attribute and topology based change detection to networks of objects that were detected on previous scans of a structure, roadway, or area of interest. The attributes capture properties or characteristics of the previously detected objects, such as location, time of detection, size, elongation, orientation, etc. The topology of the network of previously detected objects is maintained in a constellation database that stores attributes of previously detected objects and implicitly captures the geometrical structure of the network. A change detection system detects change by comparing the attributes and topology of new objects detected on the latest scan to the constellation database of previously detected objects.
    Type: Grant
    Filed: August 26, 2011
    Date of Patent: June 17, 2014
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: David W. Paglieroni, N. Reginald Beer
  • Patent number: 8730085
    Abstract: A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes the return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.
    Type: Grant
    Filed: August 26, 2011
    Date of Patent: May 20, 2014
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: David W. Paglieroni, N. Reginald Beer
  • Patent number: 8717223
    Abstract: The classification system represents a detected object with a feature vector derived from the return signals acquired by an array of N transceivers operating in multistatic mode. The classification system generates the feature vector by transforming the real-valued return signals into complex-valued spectra, using, for example, a Fast Fourier Transform. The classification system then generates a feature vector of singular values for each user-designated spectral sub-band by applying a singular value decomposition (SVD) to the N×N square complex-valued matrix formed from sub-band samples associated with all possible transmitter-receiver pairs. The resulting feature vector of singular values may be transformed into a feature vector of singular value likelihoods and then subjected to a multi-category linear or neural network classifier for object classification.
    Type: Grant
    Filed: August 26, 2011
    Date of Patent: May 6, 2014
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: David H. Chambers, David W. Paglieroni
  • Patent number: 8711028
    Abstract: A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes the return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.
    Type: Grant
    Filed: August 26, 2011
    Date of Patent: April 29, 2014
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: David W. Paglieroni, David H. Chambers, Steven W. Bond, N. Reginald Beer
  • Patent number: 8681036
    Abstract: A system that detects damage on or below the surface of a paved structure or pavement is provided. A distributed road assessment system includes road assessment pods and a road assessment server. Each road assessment pod includes a ground-penetrating radar antenna array and a detection system that detects road damage from the return signals as the vehicle on which the pod is mounted travels down a road. Each road assessment pod transmits to the road assessment server occurrence information describing each occurrence of road damage that is newly detected on a current scan of a road. The road assessment server maintains a road damage database of occurrence information describing the previously detected occurrences of road damage. After the road assessment server receives occurrence information for newly detected occurrences of road damage for a portion of a road, the road assessment server determines which newly detected occurrences correspond to which previously detected occurrences of road damage.
    Type: Grant
    Filed: August 26, 2011
    Date of Patent: March 25, 2014
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: N. Reginald Beer, David W. Paglieroni