Patents by Inventor David W. Robinson

David W. Robinson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9375288
    Abstract: A method for a minimally invasive surgical system is disclosed including reading first tool information from a storage device in a first robotic surgical tool mounted to a first robotic arm to at least determine a first tool type; reading equipment information about one or more remote controlled equipment for control thereof; comparing the first tool information with the equipment information to appropriately match a first remote controlled equipment of the one or more remote controlled equipment to the first robotic surgical tool; and mapping one or more user interface input devices of a first control console to control the first remote controlled equipment to support a function of the first robotic surgical tool.
    Type: Grant
    Filed: March 9, 2015
    Date of Patent: June 28, 2016
    Assignee: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: David W. Robinson, Thomas R. Nixon, Michael Hanuschik, Randal P. Goldberg, Jason Hemphill, David Q. Larkin, Paul Millman
  • Publication number: 20160030119
    Abstract: Methods and systems for damping vibrations in a surgical system are disclosed herein. The surgical system can include one or several moveable set-up linkages. A damper can be connected with one or several of the set-up linkages. The damper can be a passive, active, or semi-active damper. The damper can mitigate a vibration arising in one of the set-up linkages, and the damper can prevent a vibration arising in one of the linkages from affecting another of the set-up linkages. The active and semi-active dampers can be controlled with a feedback model and a feed-forward model.
    Type: Application
    Filed: July 31, 2015
    Publication date: February 4, 2016
    Inventors: Roman L. Devengenzo, Bruce M. Schena, David W. Robinson
  • Publication number: 20160030118
    Abstract: Methods and systems for damping vibrations in a surgical system are disclosed herein. The damping of these vibrations can increase the precision of surgery performed using the surgical system. The surgical system can include one or several moveable set-up linkages. A damper can be connected with one or several of the set-up linkages. The damper can be a passive damper and can mitigate a vibration arising in one or more of the set-up linkages. The damper can additionally prevent a vibration arising in one of the linkages from affecting another of the set-up linkages.
    Type: Application
    Filed: July 31, 2015
    Publication date: February 4, 2016
    Inventors: Roman L. Devengenzo, Bruce M. Schena, David W. Robinson
  • Publication number: 20160022360
    Abstract: A patient side cart for a teleoperated surgical system can include at least one manipulator arm portion for holding a surgical instrument, a steering interface, and a drive system. The steering interface may be configured to detect a force applied by a user to the steering interface indicating a desired movement for the teleoperated surgical system. The drive system can include at least one driven wheel, a control module, and a model section. The control module may receive as input a signal from the steering interface corresponding to the force applied by the user to the steering interface. The control module may be configured to output a desired movement signal corresponding to the signal received from the steering interface. The model section can include a model of movement behavior of the patient side cart, the model section outputting a movement command output to drive the driven wheel.
    Type: Application
    Filed: July 24, 2015
    Publication date: January 28, 2016
    Applicant: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Paul G. GRIFFITHS, Arjang M. HOURTASH, Paul W. MOHR, David W. ROBINSON, Nitish SWARUP, John W. ZABINSKI, Mark W. ZIMMER
  • Publication number: 20150173849
    Abstract: A method for a minimally invasive surgical system is disclosed including reading first tool information from a storage device in a first robotic surgical tool mounted to a first robotic arm to at least determine a first tool type; reading equipment information about one or more remote controlled equipment for control thereof; comparing the first tool information with the equipment information to appropriately match a first remote controlled equipment of the one or more remote controlled equipment to the first robotic surgical tool; and mapping one or more user interface input devices of a first control console to control the first remote controlled equipment to support a function of the first robotic surgical tool.
    Type: Application
    Filed: March 9, 2015
    Publication date: June 25, 2015
    Applicant: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: David W. ROBINSON, Thomas R. NIXON, Michael HANUSCHIK, Randal P. GOLDBERG, Jason HEMPHILL, David Q. LARKIN, Paul MILLMAN
  • Publication number: 20150012134
    Abstract: A method for a minimally invasive surgical system is disclosed including reading first tool information from a storage device in a first robotic surgical tool mounted to a first robotic arm to at least determine a first tool type; reading equipment information about one or more remote controlled equipment for control thereof; comparing the first tool information with the equipment information to appropriately match a first remote controlled equipment of the one or more remote controlled equipment to the first robotic surgical tool; and mapping one or more user interface input devices of a first control console to control the first remote controlled equipment to support a function of the first robotic surgical tool.
    Type: Application
    Filed: September 26, 2014
    Publication date: January 8, 2015
    Applicant: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: David W. ROBINSON, Thomas R. NIXON, Michael HANUSCHIK, Randal P. GOLDBERG, Jason HEMPHILL, David Q. LARKIN, Paul MILLMAN
  • Patent number: 8892224
    Abstract: Continuous change of state directions are graphically provided on a display screen to assist a user in performing necessary action(s) for transitioning between operating modes in a medical robotic system or performing corrective action. A graphical representation of a target state of an element of the medical robotic system is displayed on a display screen viewable by the user. Current states of the element and indications directing the user to manipulate the element towards the target state are continuously determined and graphical representations of the continuously determined current states and indications are displayed on the display screen along with that of the target state.
    Type: Grant
    Filed: October 14, 2013
    Date of Patent: November 18, 2014
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Paul W. Mohr, David W. Robinson
  • Patent number: 8862268
    Abstract: A method for a minimally invasive surgical system is disclosed including reading first tool information from a storage device in a first robotic surgical tool mounted to a first robotic arm to at least determine a first tool type; reading equipment information about one or more remote controlled equipment for control thereof; comparing the first tool information with the equipment information to appropriately match a first remote controlled equipment of the one or more remote controlled equipment to the first robotic surgical tool; and mapping one or more user interface input devices of a first control console to control the first remote controlled equipment to support a function of the first robotic surgical tool.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: October 14, 2014
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: David W. Robinson, Thomas R. Nixon, Michael Hanuschik, Randal P. Goldberg, Jason Hemphill, David Larkin, Paul Millman
  • Publication number: 20140282196
    Abstract: A robotic system provides user selectable actions associated with gaze tracking according to user interface types. User initiated correction and/or recalibration of the gaze tracking may be performed during the processing of individual of the user selectable actions.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 18, 2014
    Applicant: Intuitive Surgical Operations, Inc.
    Inventors: Wenyi Zhao, Christopher J. Hasser, Brandon D. Itkowitz, Paul E. Lilagan, David D. Scott, Paul W. Mohr, Simon P. DiMaio, David W. Robinson, Tao Zhao
  • Publication number: 20140232824
    Abstract: An operator telerobotically controls tools to perform a procedure on an object at a work site while viewing real-time images of the object, tools and work site on a display. Tool information is provided by filtering a part of the real-time images for enhancement or degradation to indicate a state of a tool and displaying the filtered images on the display.
    Type: Application
    Filed: February 15, 2013
    Publication date: August 21, 2014
    Applicant: Intuitive Surgical Operations, Inc.
    Inventors: Simon P. DiMaio, Brian D. Hoffman, Brandon D. Itkowitz, Paul W. Mohr, David W. Robinson, Tao Zhao, Wenyi Zhao
  • Publication number: 20140039521
    Abstract: Continuous change of state directions are graphically provided on a display screen to assist a user in performing necessary action(s) for transitioning between operating modes in a medical robotic system or performing corrective action. A graphical representation of a target state of an element of the medical robotic system is displayed on a display screen viewable by the user. Current states of the element and indications directing the user to manipulate the element towards the target state are continuously determined and graphical representations of the continuously determined current states and indications are displayed on the display screen along with that of the target state.
    Type: Application
    Filed: October 14, 2013
    Publication date: February 6, 2014
    Applicant: Intuitive Surgical Operations, Inc.
    Inventors: Paul W. Mohr, David W. Robinson
  • Patent number: 8583274
    Abstract: Continuous change of state directions are graphically provided on a display screen to assist a user in performing necessary action(s) for transitioning between operating modes in a medical robotic system or performing corrective action. A graphical representation of a target state of an element of the medical robotic system is displayed on a display screen viewable by the user. Current states of the element and indications directing the user to manipulate the element towards the target state are continuously determined and graphical representations of the continuously determined current states and indications are displayed on the display screen along with that of the target state.
    Type: Grant
    Filed: October 18, 2012
    Date of Patent: November 12, 2013
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Paul W. Mohr, David W. Robinson
  • Publication number: 20130103197
    Abstract: Continuous change of state directions are graphically provided on a display screen to assist a user in performing necessary action(s) for transitioning between operating modes in a medical robotic system or performing corrective action. A graphical representation of a target state of an element of the medical robotic system is displayed on a display screen viewable by the user. Current states of the element and indications directing the user to manipulate the element towards the target state are continuously determined and graphical representations of the continuously determined current states and indications are displayed on the display screen along with that of the target state.
    Type: Application
    Filed: October 18, 2012
    Publication date: April 25, 2013
    Applicant: Intuitive Surgical Operations, Inc.
    Inventors: Paul W. Mohr, David W. Robinson
  • Patent number: 8315720
    Abstract: Continuous change of state directions are graphically provided on a display screen to assist a user in performing necessary action(s) for transitioning between operating modes in a medical robotic system or performing corrective action. A graphical representation of a target state of an element of the medical robotic system is displayed on a display screen viewable by the user. Current states of the element and indications directing the user to manipulate the element towards the target state are continuously determined and graphical representations of the continuously determined current states and indications are displayed on the display screen along with that of the target state.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: November 20, 2012
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Paul W. Mohr, David W. Robinson
  • Patent number: 7900725
    Abstract: A method for fore-aft stabilization of a vehicle for motion in a specified direction over an underlying surface. The vehicle has at least one forward wheel and at least one aft wheel, and the forward wheel is characterized by a force normal to the instantaneous direction of motion of the vehicle. A motor actuator drives each aft wheel, and a controller governs the motor actuator or motor actuators in such a manner as to dynamically stabilize the vehicle, according to a uniform control law, when the forward wheel is in contact with the underlying surface or not. A torque is applied to the aft wheel on the basis of vehicle pitch or the force on the forward wheel normal to the direction of motion. Additionally, a periodic rotational modulation may be applied to the aft wheel, and a stabilizing torque provided based on a detected response, either of vehicle pitch or of normal force on the front wheel.
    Type: Grant
    Filed: October 11, 2005
    Date of Patent: March 8, 2011
    Assignee: Segway Inc.
    Inventors: John D. Heinzmann, David W. Robinson, Jon Michael Stevens, J. Douglas Field, Jeremy B. Lund
  • Patent number: 7757794
    Abstract: A method for fore-aft stabilization of a vehicle for motion in a specified direction over an underlying surface. The vehicle has at least one forward wheel and at least one aft wheel, and the forward wheel is characterized by a force normal to the instantaneous direction of motion of the vehicle. A motor actuator drives each aft wheel, and a controller governs the motor actuator or motor actuators in such a manner as to dynamically stabilize the vehicle, according to a uniform control law, when the forward wheel is in contact with the underlying surface or not. A torque is applied to the aft wheel on the basis of vehicle pitch or the force on the forward wheel normal to the direction of motion. Additionally, a periodic rotational modulation may be applied to the aft wheel, and a stabilizing torque provided based on a detected response, either of vehicle pitch or of normal force on the front wheel.
    Type: Grant
    Filed: December 17, 2008
    Date of Patent: July 20, 2010
    Assignee: Segway, Inc.
    Inventors: John D. Heinzmann, David W. Robinson, Jon M. Stevens, J. Douglas Field, Jeremy B. Lund
  • Publication number: 20100082039
    Abstract: Continuous change of state directions are graphically provided on a display screen to assist a user in performing necessary action(s) for transitioning between operating modes in a medical robotic system or performing corrective action. A graphical representation of a target state of an element of the medical robotic system is displayed on a display screen viewable by the user. Current states of the element and indications directing the user to manipulate the element towards the target state are continuously determined and graphical representations of the continuously determined current states and indications are displayed on the display screen along with that of the target state.
    Type: Application
    Filed: September 26, 2008
    Publication date: April 1, 2010
    Applicant: Intuitive Surgical, Inc.
    Inventors: PAUL W. MOHR, David W. ROBINSON
  • Publication number: 20090099762
    Abstract: A method for fore-aft stabilization of a vehicle for motion in a specified direction over an underlying surface. The vehicle has at least one forward wheel and at least one aft wheel, and the forward wheel is characterized by a force normal to the instantaneous direction of motion of the vehicle. A motor actuator drives each aft wheel, and a controller governs the motor actuator or motor actuators in such a manner as to dynamically stabilize the vehicle, according to a uniform control law, when the forward wheel is in contact with the underlying surface or not. A torque is applied to the aft wheel on the basis of vehicle pitch or the force on the forward wheel normal to the direction of motion. Additionally, a periodic rotational modulation may be applied to the aft wheel, and a stabilizing torque provided based on a detected response, either of vehicle pitch or of normal force on the front wheel.
    Type: Application
    Filed: December 17, 2008
    Publication date: April 16, 2009
    Applicant: Segway Inc.
    Inventors: John D. Heinzmann, David W. Robinson, Jon M. Stevens, J. Douglas Field, Jeremy B. Lund
  • Patent number: 7263453
    Abstract: Methods and apparatus for detecting a sensor angle error in a system in which a measured quantity is determined on the basis of a phase of a signal. A signal derived from the measurement of multiple sensors is ascribed to a vector in a two-dimensional space, and a norm is calculated characterizing that vector. A value is calculated characterizing variation of that norm over a specified period of time and that value is compared with a threshold in order to identify a sensor fault.
    Type: Grant
    Filed: January 19, 2005
    Date of Patent: August 28, 2007
    Assignee: DEKA Products Limited Partnership
    Inventors: Michael Thomas Gansler, Michael Field Kaufman, Soundararajan Manthiri, David W. Robinson, Jason M. Sachs
  • Patent number: 7157875
    Abstract: An electric device includes a motor and a motor drive for commanding a torque generated by the motor. A fault control circuit detects a fault condition associated with the motor drive. Upon detection of the fault condition, the fault control circuit adjusts the torque commanded by the motor drive.
    Type: Grant
    Filed: November 14, 2005
    Date of Patent: January 2, 2007
    Assignee: DEKA Products Limited Partnership
    Inventors: Dean Kamen, John B. Morrell, David W. Robinson, Ronald K. Reich, John David Heinzmann, Philip LeMay, Steven R. Meyer, Jason M. Sachs, J. Douglas Field