Patents by Inventor David Wayne Jennings

David Wayne Jennings has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190049361
    Abstract: A method for measuring chemical species deposition in a well, flow line, or processing equipment includes monitoring a resonator sensor in a well, flow line, or processing equipment having a fluid flowing therethrough, where the resonator sensor can be a torsional resonator or a symmetrical sensor, and the method also includes detecting a change in resonance of the resonator sensor indicating the deposition of a chemical species on the resonator sensor. The resonator sensor can also measure the amount of chemical species deposited. The fluid may be an organic and/or aqueous fluid that comprises petroleum and/or produced water and the deposition chemical species include, but are not necessarily limited to, asphaltenes, wax, scale, gas hydrates, naphthenic acid salts, and combinations thereof.
    Type: Application
    Filed: August 2, 2018
    Publication date: February 14, 2019
    Applicant: Baker Hughes, a GE company, LLC
    Inventors: David Wayne Jennings, Michael J. Deighton, Brian B. Ochoa, Tudor C. Ionescu
  • Publication number: 20190048712
    Abstract: A method for monitoring the quality, stability, and potential deposition of process treatment fluids pumped into subsea umbilical systems includes monitoring a resonator sensor in the subsea umbilical system having a fluid flowing therethrough, where the resonator sensor can be a torsional resonator or a symmetrical sensor, and the method also includes detecting a change in resonance of the resonator sensor indicating the deposition of a chemical species on the resonator sensor or significant change in process treatment fluid physical viscosity and density properties. The resonator sensor can also measure the amount of chemical species deposited. The fluid may be an organic and/or aqueous based fluid. The method includes performing at least one action in response to detecting the change, which action prevents or inhibits blockage of the subsea umbilical system.
    Type: Application
    Filed: August 2, 2018
    Publication date: February 14, 2019
    Applicant: Baker Hughes, a GE company, LLC
    Inventors: David Wayne Jennings, Paul Robert Stead, Michael J. Deighton, Sunder Ramachandran, Tudor C. Ionescu
  • Patent number: 9360425
    Abstract: A petroleum-based fluid sample may be centrifuged in a centrifuge vial where a light may be passed through the petroleum-based fluid sample to identify an amount of transmitted light at two or more time intervals. The stability of the foulant(s) and/or efficacy of the foulant inhibitors to prevent the destabilization of the foulants may be determined by comparing a change in the amounts of transmitted light through the petroleum-based fluid sample. The petroleum-based fluid sample may include a petroleum-based fluid, at least one foulant, and an optional additive for destabilizing the foulant(s). The additive may be or include a first component, such as but not limited to n-alkanes, iso-alkanes, alkenes, alkynes, cyclo-alkanes, natural gas, natural gas condensate, alcohols, ethers, ketones, organic acids, acetates, carbon dioxide, and combinations thereof.
    Type: Grant
    Filed: May 1, 2014
    Date of Patent: June 7, 2016
    Assignee: Baker Hughes Incorporated
    Inventors: David Wayne Jennings, Robert Cable, Geoffrey Charles Leonard
  • Publication number: 20140326886
    Abstract: A petroleum-based fluid sample may be centrifuged in a centrifuge vial where a light may be passed through the petroleum-based fluid sample to identify an amount of transmitted light at two or more time intervals. The stability of the foulant(s) and/or efficacy of the foulant inhibitors to prevent the destabilization of the foulants may be determined by comparing a change in the amounts of transmitted light through the petroleum-based fluid sample. The petroleum-based fluid sample may include a petroleum-based fluid, at least one foulant, and an optional additive for destabilizing the foulant(s). The additive may be or include a first component, such as but not limited to n-alkanes, iso-alkanes, alkenes, alkynes, cyclo-alkanes, natural gas, natural gas condensate, alcohols, ethers, ketones, organic acids, acetates, carbon dioxide, and combinations thereof.
    Type: Application
    Filed: May 1, 2014
    Publication date: November 6, 2014
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: David Wayne Jennings, Robert Cable, Geoffrey Charles Leonard
  • Patent number: 7541315
    Abstract: Disclosed are paraffin inhibitors prepared by admixing a polymer having the characteristic of inhibiting paraffin crystalline growth in formation fluid from oil and gas wells with a first solvent selected from the weak to moderate wax solvents and a second solvent selected from the strong wax solvents. Exemplary weak to moderate wax solvents include benzene, toluene, xylene, ethyl benzene, propyl benzene, trimethyl benzene and mixtures thereof. Exemplary strong wax solvents include cyclopentane, cyclohexane, carbon disulfide, decalin and mixtures thereof. The solvent system disclosed has desirably better solubility with the polymers, even at reduced temperatures, than either solvent alone. It is emphasized that this abstract is provided to comply with the rules requiring an abstract which will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will be used to interpret or limit the scope or meaning of the claims.
    Type: Grant
    Filed: May 14, 2007
    Date of Patent: June 2, 2009
    Assignee: Baker Hughes Incorporated
    Inventor: David Wayne Jennings
  • Publication number: 20040058827
    Abstract: Disclosed are paraffin inhibitors prepared by admixing a polymer having the characteristic of inhibiting paraffin crystalline growth in formation fluid from oil and gas wells with a first solvent selected from the weak to moderate wax solvents and a second solvent selected from the strong wax solvents. Exemplary weak to moderate wax solvents include benzene, toluene, xylene, ethyl benzene, propyl benzene, trimethyl benzene and mixtures thereof. Exemplary strong wax solvents include cyclopentane, cyclohexane, carbon disulfide, decalin and mixtures thereof. The solvent system disclosed has desirably better solubility with the polymers, even at reduced temperatures, than either solvent alone.
    Type: Application
    Filed: September 11, 2003
    Publication date: March 25, 2004
    Applicant: Baker Hughes Incorporated
    Inventor: David Wayne Jennings