Patents by Inventor David Weitz

David Weitz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20070195127
    Abstract: The present invention generally relates to systems and methods for the control of fluidic species and, in particular, to the coalescence of fluidic droplets. In certain instances, the systems and methods are microfluidic. In one aspect, the invention relates to systems and methods for causing two or more fluidic droplets within a channel to coalescence. The fluidic droplets may be of unequal size in certain cases. In some embodiments, a first fluidic droplet may be caused to move at a first velocity, and a second fluidic droplet may be caused to move at a second velocity different from the first velocity, for instance, substantially greater than the first velocity. The droplets may then coalesce, for example, upon application of an electric field. In the absence of an electric field, in some cases, the droplets may be unable to coalesce. In some cases, two series of fluidic droplets may coalesce, one or both series being substantially uniform.
    Type: Application
    Filed: January 24, 2007
    Publication date: August 23, 2007
    Applicant: President and Fellows of Harvard College
    Inventors: Keunho Ahn, Henry Chong, Jeremy Agresti, David Weitz, Darren Link
  • Publication number: 20070184489
    Abstract: The invention describes a method for the synthesis of compounds comprising the steps of: (a) compartmentalising two or more sets of primary compounds into microcapsules; such that a proportion of the microcapsules contains two or more compounds; and (b) forming secondary compounds in the microcapsules by chemical reactions between primary compounds from different sets; wherein one or both of steps (a) and (b) is performed under microfluidic control; preferably electronic microfluidic control The invention further allows for the identification of compounds which bind to a target component of a biochemical system or modulate the activity of the target, and which is co-compartmentalised into the microcapsules.
    Type: Application
    Filed: December 20, 2006
    Publication date: August 9, 2007
    Inventors: Andrew Griffiths, David Weitz, Darren Link, Keunho Ahn, Jerome Bibette
  • Publication number: 20070092914
    Abstract: The invention describes a method for the identification of compounds which bind to a target component of a biochemical system or modulate the activity of the target, comprising the steps of: a) compartmentalising the compounds into microcapsules together with the target, such that only a subset of the repertoire is represented in multiple copies in any one microcapsule; and b) identifying the compound which binds to or modulates the activity of the target; wherein at least one step is performed under microfluidic control. The invention enables the screening of large repertoires of molecules which can serve as leads for drug development.
    Type: Application
    Filed: December 4, 2006
    Publication date: April 26, 2007
    Inventors: Andrew Griffiths, David Weitz, Darren Link, Keunho Ahn, Jerome Bibette
  • Publication number: 20070052781
    Abstract: The present invention relates generally to microfluidic structures, and more specifically, to microfluidic structures and methods including microreactors for manipulating fluids and reactions. In some embodiments, structures and methods for manipulating many (e.g., 1000) fluid samples, i.e., in the form of droplets, are described. Processes such as diffusion, evaporation, dilution, and precipitation can be controlled in each fluid sample. These methods also enable conditions within the fluid samples (e.g., concentration) to be controlled. Manipulation of fluid samples can be useful for a variety of applications, including testing for reaction conditions, e.g., in crystallization, chemical, and biological assays.
    Type: Application
    Filed: September 8, 2005
    Publication date: March 8, 2007
    Applicants: President and Fellows of Harvard College, Brandeis University
    Inventors: Seth Fraden, Darren Link, Galder Cristobal-Azkarate, Jung Shim, David Weitz
  • Publication number: 20070003442
    Abstract: Various aspects of the present invention relate to the control and manipulation of fluidic species, for example, in microfluidic systems. In one aspect, the invention relates to systems and methods for making droplets of fluid surrounded by a liquid, using, for example, electric fields, mechanical alterations, the addition of an intervening fluid, etc. In some cases, the droplets may each have a substantially uniform number of entities therein. For example, 95% or more of the droplets may each contain the same number of entities of a particular species. In another aspect, the invention relates to systems and methods for dividing a fluidic droplet into two droplets, for example, through charge and/or dipole interactions with an electric field. The invention also relates to systems and methods for fusing droplets according to another aspect of the invention, for example, through charge and/or dipole interactions. In some cases, the fusion of the droplets may initiate or determine a reaction.
    Type: Application
    Filed: February 23, 2006
    Publication date: January 4, 2007
    Applicant: President and Fellows of Harvard College
    Inventors: Darren Link, David Weitz, Galder Cristobal-Azkarate, Zhengdong Cheng, Keunho Ahn
  • Publication number: 20060163385
    Abstract: This invention generally relates to systems and methods for the formation and/or control of fluidic species, and articles produced by such systems and methods. In some cases, the invention involves unique fluid channels, systems, controls, and/or restrictions, and combinations thereof. In certain embodiments, the invention allows fluidic streams (which can be continuous or discontinuous, i.e., droplets) to be formed and/or combined, at a variety of scales, including microfluidic scales. In one set of embodiments, a fluidic stream may be produced from a channel, where a cross-sectional dimension of the fluidic stream is smaller than that of the channel, for example, through the use of structural elements, other fluids, and/or applied external fields, etc. In some cases, a Taylor cone may be produced.
    Type: Application
    Filed: October 7, 2005
    Publication date: July 27, 2006
    Inventors: Darren Link, David Weitz, Manuel Marquez-Sanchez, Zhengdong Cheng
  • Publication number: 20060078893
    Abstract: The invention describes a method for the synthesis of compounds comprising the steps of: (a) compartmentalising two or more sets of primary compounds into microcapsules; such that a proportion of the microcapsules contains two or more compounds; and (b) forming secondary compounds in the microcapsules by chemical reactions between primary compounds from different sets; wherein one or both of steps (a) and (b) is performed under microfluidic control; preferably electronic microfluidic control The invention further allows for the identification of compounds which bind to a target component of a biochemical system or modulate the activity of the target, and which is co-compartmentalised into the microcapsules.
    Type: Application
    Filed: October 12, 2004
    Publication date: April 13, 2006
    Inventors: Andrew Griffiths, David Weitz, Darren Link, Keunho Ahn, Jerome Bibette
  • Publication number: 20060078888
    Abstract: The invention describes a method for isolating one or more genetic elements encoding a gene product having a desired activity, comprising the steps of: (a) compartmentalising genetic elements into microcapsules; and (b) sorting the genetic elements which express the gene product having the desired activity; wherein at least one step is under microfluidic control. The invention enables the in vitro evolution of nucleic acids and proteins by repeated mutagenesis and iterative applications of the method of the invention.
    Type: Application
    Filed: October 8, 2004
    Publication date: April 13, 2006
    Inventors: Andrew Griffiths, David Weitz, Darren Link, Keunho Ahn, Jerome Bibette
  • Publication number: 20050221339
    Abstract: The invention describes a method for the identification of compounds which bind to a target component of a biochemical system or modulate the activity of the target, comprising the steps of: a) compartmentalising the compounds into microcapsules together with the target, such that only a subset of the repertoire is represented in multiple copies in any one microcapsule; and b) identifying the compound which binds to or modulates the activity of the target; wherein at least one step is performed under microfluidic control. The invention enables the screening of large repertoires of molecules which can serve as leads for drug development.
    Type: Application
    Filed: October 12, 2004
    Publication date: October 6, 2005
    Inventors: Andrew Griffiths, David Weitz, Darren Link, Keunho Ahn, Jerome Bibette
  • Publication number: 20050172476
    Abstract: A microfluidic method and device for focusing and/or forming discontinuous sections of similar or dissimilar size in a fluid is provided. The device can be fabricated simply from readily-available, inexpensive material using simple techniques.
    Type: Application
    Filed: December 28, 2004
    Publication date: August 11, 2005
    Applicants: President and Fellows of Havard College, The Governing Council of the University of Toronto
    Inventors: Howard Stone, Shelley Anna, Nathalie Bontoux, Darren Link, David Weitz, Irina Gitlin, Eugenia Kumacheva, Piotr Garstecki, Willow Diluzio, George Whitesides
  • Publication number: 20040010060
    Abstract: The invention relates to new vesicles structures, and their use for delivering actives. The vesicles according to the invention are obtained from di-block copolymers. The vesicles comprise an external shell of a di-block copolymer comprising a hydrophilic block and a hydrophobic block, and at least one internal shell of the same or another di-block copolymer comprising a hydrophilic block and a hydrophobic block, the hydrophobic block of the external shell facing the hydrophobic block of the internal shell(s), and further comprise a hydrophobic compound between the shells.
    Type: Application
    Filed: March 19, 2003
    Publication date: January 15, 2004
    Inventors: Mathieu Joanicot, Ani Nikova, Maria Ruela Talingting, David Weitz