Patents by Inventor David Welshans

David Welshans has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9598956
    Abstract: A method and apparatus according to which a sample bottle drill collar section is assembled. In an exemplary embodiment, the apparatus includes a drill collar that includes an outer surface; a pocket accessible through an aperture in the outer surface, the pocket defining a first side wall and a second side wall; a bottle assembly disposed within the pocket, the bottle assembly comprising a sample bottle having an axial length; one or more clamps coupled to the outer surface and abutting or overlapping the bottle assembly, the one or more clamps at least partially retaining the bottle assembly in the pocket; and one or more spacers disposed within the pocket, the one or more spacers abutting the bottle assembly and at least one of the first and second side walls of the pocket.
    Type: Grant
    Filed: June 9, 2015
    Date of Patent: March 21, 2017
    Assignee: HALLIBURTON ENERGY SERVICES, INC.
    Inventors: Kristopher V. Sherrill, Clive D. Menezes, David Welshans
  • Publication number: 20150275662
    Abstract: A method and apparatus according to which a sample bottle drill collar section is assembled. In an exemplary embodiment, the apparatus includes a drill collar that includes an outer surface; a pocket accessible through an aperture in the outer surface, the pocket defining a first side wall and a second side wall; a bottle assembly disposed within the pocket, the bottle assembly comprising a sample bottle having an axial length; one or more clamps coupled to the outer surface and abutting or overlapping the bottle assembly, the one or more clamps at least partially retaining the bottle assembly in the pocket; and one or more spacers disposed within the pocket, the one or more spacers abutting the bottle assembly and at least one of the first and second side walls of the pocket.
    Type: Application
    Filed: June 9, 2015
    Publication date: October 1, 2015
    Inventors: Kristopher V. Sherrill, Clive D. Menezes, David Welshans
  • Patent number: 9068405
    Abstract: A sample bottle assembly. At least some of the illustrative embodiments are apparatuses including a first drill collar that includes: a first outer surface; a pocket accessible through an aperture in the first outer surface; a bottle assembly disposed within the pocket; a first end-clamp coupled within a first recess disposed at an upper end of the pocket to at least partially retain the bottle assembly in the pocket; and a second end-clamp coupled within a second recess disposed at the lower end of the pocket to at least partially retain the bottle assembly in the pocket. The bottle assembly further includes: a sample bottle having an axial length; and a sleeve comprising a bore, the sample bottle received within the bore, and the sleeve has an axial length substantially the same as the sample bottle.
    Type: Grant
    Filed: February 20, 2010
    Date of Patent: June 30, 2015
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Kristopher V. Sherrill, Clive D. Menezes, David Welshans
  • Publication number: 20130014994
    Abstract: A sample bottle assembly. At least some of the illustrative embodiments are apparatuses including a first drill collar that includes: a first outer surface; a pocket accessible through an aperture in the first outer surface; a bottle assembly disposed within the pocket; a first end-clamp coupled within a first recess disposed at an upper end of the pocket to at least partially retain the bottle assembly in the pocket; and a second end-clamp coupled within a second recess disposed at the lower end of the pocket to at least partially retain the bottle assembly in the pocket. The bottle assembly further includes: a sample bottle having an axial length; and a sleeve comprising a bore, the sample bottle received within the bore, and the sleeve has an axial length substantially the same as the sample bottle.
    Type: Application
    Filed: February 20, 2010
    Publication date: January 17, 2013
    Applicant: HALLIBURTON ENERGY SERVICES, INC
    Inventors: Kristopher V. Sherrill, Clive D. Menezes, David Welshans
  • Patent number: 7966875
    Abstract: This application relates to various methods and apparatus for rapidly obtaining accurate formation property data from a drilled earthen borehole. Quickly obtaining accurate formation property data, including formation fluid pressure, is vital to beneficially describing the various formations being intersected. For example, methods are disclosed for collecting numerous property values with a minimum of downhole tools, correcting and calibrating downhole measurements and sensors, and developing complete formation predictors and models by acquiring a diverse set of direct formation measurements, such as formation fluid pressure and temperature. Also disclosed are various methods of using of accurately and quickly obtained formation property data.
    Type: Grant
    Filed: April 19, 2008
    Date of Patent: June 28, 2011
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Mark A. Proett, James M. Fogal, James H. Dudley, Laban M. Marsh, David Welshans, Jean Michel Beique, John R. Hardin, Jr., William E. Hendricks, Gregory N. Gilbert, Mark A. Sitka, James E. Stone
  • Patent number: 7938199
    Abstract: An embodiment of the apparatus includes a first drill collar section having an outer surface, an MWD tool for interaction with an earth formation coupled to the first drill collar section, the MWD tool including a first fluid line and a first electrical conduit, a second drill collar section, and an interconnect assembly coupling the second drill collar section to the first drill collar section, the interconnect assembly comprising a fluid line connection coupled to the first fluid line and an electrical connection coupled to the first electrical conduit. Another embodiment of the apparatus includes a probe, an interconnect assembly adapted for fluid communication and electrical communication, and a sample bottle drill collar section including at least one removable sample bottle in fluid communication with the probe. Another embodiment of the apparatus includes a flush pump mounted in the power collar section and coupled to the probe.
    Type: Grant
    Filed: June 8, 2007
    Date of Patent: May 10, 2011
    Assignee: Halliburton Energy Services, Inc.
    Inventors: David Welshans, Kristopher V. Sherrill
  • Publication number: 20090195250
    Abstract: An embodiment of the apparatus includes a first drill collar section having an outer surface, an MWD tool for interaction with an earth formation coupled to the first drill collar section, the MWD tool including a first fluid line and a first electrical conduit, a second drill collar section, and an interconnect assembly coupling the second drill collar section to the first drill collar section, the interconnect assembly comprising a fluid line connection coupled to the first fluid line and an electrical connection coupled to the first electrical conduit. Another embodiment of the apparatus includes a probe, an interconnect assembly adapted for fluid communication and electrical communication, and a sample bottle drill collar section including at least one removable sample bottle in fluid communication with the probe. Another embodiment of the apparatus includes a flush pump mounted in the power collar section and coupled to the probe.
    Type: Application
    Filed: June 8, 2007
    Publication date: August 6, 2009
    Applicant: HALLIBURTON ENERGY SERVICES, INC.
    Inventors: David Welshans, Kristopher V. Sherrill
  • Publication number: 20080314137
    Abstract: This application relates to various methods and apparatus for rapidly obtaining accurate formation property data from a drilled earthen borehole. Quickly obtaining accurate formation property data, including formation fluid pressure, is vital to beneficially describing the various formations being intersected. For example, methods are disclosed for collecting numerous property values with a minimum of downhole tools, correcting and calibrating downhole measurements and sensors, and developing complete formation predictors and models by acquiring a diverse set of direct formation measurements, such as formation fluid pressure and temperature. Also disclosed are various methods of using of accurately and quickly obtained formation property data.
    Type: Application
    Filed: April 19, 2008
    Publication date: December 25, 2008
    Applicant: HALLIBURTON ENERGY SERVICES, INC
    Inventors: Mark A. Proett, James M. Fogal, James H. Dudley, Laban M. Marsh, David Welshans, Jean Michel Beique, John R. Hardin, JR., William E. Hendricks, Gregory N. Gilbert, Mark A. Sitka, James E. Stone
  • Publication number: 20070181341
    Abstract: An apparatus including a drill collar having an outer surface, an assembly for interaction with an earth formation coupled to the drill collar, the assembly including a first member to extend beyond the drill collar outer surface and a second member to extend beyond the first member and toward the earth formation to receive formation fluids. An apparatus including an MWD tool having an outer surface, a formation testing assembly coupled to the MWD tool, the formation testing assembly recessed beneath the outer surface in a first position and including a piston to extend beyond the outer surface to a second position and an inner sampling member to extend beyond the piston to a third position.
    Type: Application
    Filed: April 16, 2007
    Publication date: August 9, 2007
    Applicant: Halliburton Energy Services, Inc.
    Inventors: Pedro Segura, Mark Sitka, George Gilbert, Preston Weintraub, Tony Vu, John Hardin, Kristopher Sherrill, David Welshans, James Stone
  • Patent number: 7243537
    Abstract: A method of determining the supercharge pressure in a formation intersected by a borehole having a wall, the method comprising disposing a formation pressure test tool into the borehole having a probe for isolating a portion of the borehole. The method further comprises extending the probe into sealing contact with the borehole wall. The method further comprises performing at least one drawdown test with the formation pressure test tool. The method further comprises modeling the supercharge pressure of the formation using the dynamic properties of the mudcake. The method further comprises determining the supercharge pressure of the formation using the supercharge pressure model. The formation pressure test tool may be conveyed into the borehole using wireline technology or on a drill string. Using the supercharge pressure, the drawdown test may be optimized, the characteristics of the drilling fluid altered, or the measurements of other sensors adjusted.
    Type: Grant
    Filed: March 1, 2005
    Date of Patent: July 17, 2007
    Assignee: Halliburton Energy Services, Inc
    Inventors: Mark A. Proett, Wilson Chung-Ling Chin, Jean Michel Beique, John R. Hardin, Jr., James M. Fogal, David Welshans, Glenn C. Gray
  • Patent number: 7216533
    Abstract: A method of testing a downhole formation using a formation tester on a drill string. The formation tester is disposed downhole on a drill string and a formation test is performed by forming a seal between a formation probe assembly and the formation. A drawdown piston then creates a volume within a cylinder to draw formation fluid into the volume through the probe assembly. The pressure of the fluid within the cylinder is monitored. The formation test procedure may then be adjusted. The test procedure may be adjusted to account for the bubble point pressure of the fluid being monitored. The pressure may monitored to verify a proper seal is formed or is being maintained. The test procedure may also be performed by maintaining a substantially constant drawdown rate using a hydraulic threshold or a variable restrictor.
    Type: Grant
    Filed: May 19, 2005
    Date of Patent: May 15, 2007
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Malcolm D. McGregor, Gregory N. Gilbert, Mark A. Proett, James M. Fogal, David Welshans, Glenn C. Gray, Svetozar Simeonov, Laban M. Marsh, Jean Michel Beique, James E. Stone
  • Publication number: 20050268709
    Abstract: A method of testing a downhole formation using a formation tester on a drill string. The formation tester is disposed downhole on a drill string and a formation test is performed by forming a seal between a formation probe assembly and the formation. A drawdown piston then creates a volume within a cylinder to draw formation fluid into the volume through the probe assembly. The pressure of the fluid within the cylinder is monitored. The formation test procedure may then be adjusted. The test procedure may be adjusted to account for the bubble point pressure of the fluid being monitored. The pressure may monitored to verify a proper seal is formed or is being maintained. The test procedure may also be performed by maintaining a substantially constant drawdown rate using a hydraulic threshold or a variable restrictor.
    Type: Application
    Filed: May 19, 2005
    Publication date: December 8, 2005
    Applicant: Halliburton Energy Services, Inc.
    Inventors: Malcolm McGregor, Gregory Gilbert, Mark Proett, James Fogal, David Welshans, Glenn Gray, Svetozar Simeonov, Laban Marsh, Jean Beique, James Stone
  • Publication number: 20050257611
    Abstract: This application relates to various methods and apparatus for rapidly obtaining accurate formation property data from a drilled earthen borehole. Quickly obtaining accurate formation property data, including formation fluid pressure, is vital to beneficially describing the various formations being intersected. For example, methods are disclosed for collecting numerous property values with a minimum of downhole tools, correcting and calibrating downhole measurements and sensors, and developing complete formation predictors and models by acquiring a diverse set of direct formation measurements, such as formation fluid pressure and temperature. Also disclosed are various methods of using of accurately and quickly obtained formation property data.
    Type: Application
    Filed: May 23, 2005
    Publication date: November 24, 2005
    Applicant: Halliburton Energy Services, Inc.
    Inventors: James Fogal, Mark Proett, James Dudley, Laban Marsh, David Welshans, Jean Beique, John Hardin, William Hendricks
  • Publication number: 20050235745
    Abstract: A method of determining the supercharge pressure in a formation intersected by a borehole having a wall, the method comprising disposing a formation pressure test tool into the borehole having a probe for isolating a portion of the borehole. The method further comprises extending the probe into sealing contact with the borehole wall. The method further comprises performing at least one drawdown test with the formation pressure test tool. The method further comprises modeling the supercharge pressure of the formation using the dynamic properties of the mudcake. The method further comprises determining the supercharge pressure of the formation using the supercharge pressure model. The formation pressure test tool may be conveyed into the borehole using wireline technology or on a drill string. Using the supercharge pressure, the drawdown test may be optimized, the characteristics of the drilling fluid altered, or the measurements of other sensors adjusted.
    Type: Application
    Filed: March 1, 2005
    Publication date: October 27, 2005
    Applicant: Halliburton Energy Services, Inc.
    Inventors: Mark Proett, Chung-Ling Wilson, Jean Beique, John Hardin, James Fogal, David Welshans, Glenn Gray
  • Publication number: 20050072565
    Abstract: A formation testing tool is described herein, including a formation probe assembly having an extendable sampling probe surrounded by a cylindrical sleeve. The sleeve is configured to engage a metal skirt having an elastomeric seal pad coupled thereto. The skirt and seal are configured to be field replaceable. The elastomeric pad has a non-planar outer surface which engages a borehole wall in preparation for formation testing. The seal pad may be donut-shaped, having an aperture through the middle of the seal pad. The seal pad and its surface may include numerous different embodiments, including having a curved profile. The seal pad may also include numerous different embodiments of means for coupling the seal pad to the metal skirt. The formation testing tool also includes formation probe assembly anti-rotation means, a deviated non-circular flowbore, and at least one closed hydraulic fluid chamber for balancing fluid pressures.
    Type: Application
    Filed: May 19, 2003
    Publication date: April 7, 2005
    Applicant: Halliburton Energy Services, Inc.
    Inventors: Pedro Segura, Mark Sitka, Gregory Gilbert, Preston Weintraub, Tony Vu, John Hardin, Kristopher Sherrill, David Welshans, James Stone