Patents by Inventor David Whelan

David Whelan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120125217
    Abstract: An automated lenticular photographic system includes an interface that permits a user to upload image files and image processing and printing equipment that is in communication with the interface for receiving the uploaded image files and processing the uploaded image files to create an interlaced print image file that is used to produce an interlaced print sheet containing interlaced print images. A pair of registration marks is formed on the interlaced print sheet outside of borders of the interlaced print images to assist in aligning the interlaced print sheet with a lenticular lens sheet. A registration system detects whether the lenticular lens sheet is off-centered and skewed relative to the interlaced print sheet.
    Type: Application
    Filed: November 11, 2011
    Publication date: May 24, 2012
    Applicant: Tracer Imaging LLC
    Inventors: Stephen S. Daniell, Steven M. Spiro, David Whelan, James Anderson, Daniel L. Lau
  • Patent number: 8179312
    Abstract: Systems and methods according to one or more embodiments are provided for obtaining a precise absolute time using a satellite system. The precise absolute time may be used, for example, as an aid for positioning systems including navigation in attenuated or jammed environments. A method of obtaining precise absolute time transfer from a satellite according to an embodiment comprises: receiving a precision time signal from a satellite, wherein the precision time signal comprises a periodic repeating code; determining a timing phase of the code; receiving additional aiding information; and using the timing phase and the additional aiding information to determine a precise absolute time.
    Type: Grant
    Filed: July 9, 2010
    Date of Patent: May 15, 2012
    Assignee: The Boeing Company
    Inventors: Clark E. Cohen, David A. Whelan, Robert W. Brumley, Gregory M. Gutt, Barton G. Ferrell
  • Patent number: 8160576
    Abstract: A method for estimating a precise position of a user device from signals from a low earth orbit (LEO) satellite includes receiving at least one carrier signal at a user device, each carrier signal being transmitted a distinct LEO satellite. The user device processes the carrier signals to obtain a first carrier phase information. The user device recalls an inertial position fix derived at an inertial reference unit. The user device derives a position of the user device based on the inertial position fix and the first carrier phase information.
    Type: Grant
    Filed: February 6, 2009
    Date of Patent: April 17, 2012
    Assignee: The Boeing Company
    Inventors: David A. Whelan, Clark E. Cohen, Greg M. Gutt, Barton G. Ferrell
  • Publication number: 20120067238
    Abstract: An automated lenticular photographic system includes an interface that permits a user to upload image files and image processing and printing equipment that is in communication with the interface for receiving the uploaded image files and processing the uploaded image files to create an interlaced print image file that is used to produce an interlaced print sheet containing interlaced print images. A pair of registration marks is formed on the interlaced print sheet outside of borders of the interlaced print images. The system also includes a processing station where the interlaced print sheet is aligned with a lenticular lens sheet with a registration system that detects whether the lenticular lens sheet is off-centered and skewed relative to the interlaced print sheet. The system also includes means for controllably adjusting the position of the lenticular lens sheet relative to the interlaced print sheet until proper registration between the lenticular lens sheet and the interlaced print sheet is achieved.
    Type: Application
    Filed: July 13, 2011
    Publication date: March 22, 2012
    Applicant: Tracer Imaging LLC
    Inventors: Stephen S. Daniell, Steven M. Spiro, David Whelan, James Anderson, Daniel L. Lau
  • Publication number: 20120072990
    Abstract: A method, system, and apparatus are disclosed for cost functions for data transmission. In one or more embodiments, the method, system, and apparatus involve assigning costs associated with the data transmission corresponding to risks. The method, system, and apparatus further involve adjusting data transmission performance parameters according to the costs and the risks. The risks are associated with potential danger, harm, and/or data loss. Data transmission operation costs are related to available radio frequency (RF) bandwidth, data transmission levels of service (LoS) and/or data transmission quality of service (QoS). In at least one embodiment, each different LoS has an associated trigger boundary, which is located at a specific distance away from a risk area and indicates where and/or when to begin data transmission.
    Type: Application
    Filed: September 22, 2010
    Publication date: March 22, 2012
    Applicant: THE BOEING COMPANY
    Inventors: Gregory M. Gutt, David A. Whelan, Wayne R. Howe, Barton G. Ferrell, Rachel Rané Schmalzried
  • Publication number: 20120045699
    Abstract: Methods and systems provide for the creation of power, water, and heat utilizing a fuel cell. According to embodiments described herein, fuel is provided to a fuel cell for the creation of power and a fuel byproduct. The fuel byproduct is routed to a byproduct separation phase of a power and water generation system, where water is separated from the fuel byproduct. The remaining mixture is reacted in a burner phase of the system to create additional heat that may be converted to mechanical energy and/or utilized with other processes within the system or outside of the system. According to other aspects, the separated water may be utilized within a biofuel production subsystem for the creation of biofuel to be used by the fuel cell.
    Type: Application
    Filed: August 20, 2010
    Publication date: February 23, 2012
    Inventors: Shailesh Atreya, David Whelan, Marianne E. Mata, Tina R. Stoia, David Gill
  • Publication number: 20110248887
    Abstract: A method and system are disclosed for providing an estimate of a location of a user receiver device. The method and system involve emitting from at least one vehicle at least one spot beam on Earth, and receiving with the user receiver device a signal from at least one spot beam. In one or more embodiments, at least one vehicle may be a satellite and/or a pseudolite. The method and system further involve calculating with the user receiver device the estimate of the location of the user receiver device according to the user receiver device's location within at least one spot beam. In some embodiments, when the user receiver device receives signals from at least two spot beams, the user receiver device calculates the estimate of the location of the user receiver device to be located in the center of the intersection of at least two spot beams.
    Type: Application
    Filed: April 8, 2010
    Publication date: October 13, 2011
    Applicant: THE BOEING COMPANY
    Inventors: David A. Whelan, Gregory M. Gutt, Robert W. Brumley, Michael L. Eglington, Christopher J. Martens, Anne T. Haddad, Rachel Ranß Schmalzried
  • Patent number: 8035558
    Abstract: Systems and methods according to one or more embodiments are provided for obtaining a precise absolute time using a satellite system. The precise absolute time may be used, for example, as an aid for positioning systems including navigation in attenuated or jammed environments. A method of obtaining precise absolute time transfer from a satellite according to an embodiment comprises: receiving a precision time signal from a satellite, wherein the precision time signal comprises a periodic repeating code; determining a timing phase of the code; receiving additional aiding information; and using the timing phase and the additional aiding information to determine a precise absolute time.
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: October 11, 2011
    Assignee: The Boeing Company
    Inventors: Clark E. Cohen, David A. Whelan, Robert W. Brumley, Gregory M. Gutt, Barton G. Ferrell
  • Patent number: 8019541
    Abstract: Data from GPS satellites within the field of view of a ground station are retransmitted to LEO satellites, such as Iridium satellites, and cross-linked if necessary before being transmitted to a user. The user is then able to combine the fed-forward data with data received directly from GPS satellites in order to resolve errors due to interference or jamming. Iridium and data aiding thus provides a means for extending GPS performance under a variety of data-impaired conditions because it can provide certain aiding information over its data link in real time.
    Type: Grant
    Filed: October 22, 2010
    Date of Patent: September 13, 2011
    Assignee: The Boeing Company
    Inventors: Clark Cohen, Bart Ferrell, Greg Gutt, David Whelan
  • Publication number: 20110148701
    Abstract: Systems and methods according to one or more embodiments are provided for obtaining a precise absolute time using a satellite system. The precise absolute time may be used, for example, as an aid for positioning systems including navigation in attenuated or jammed environments. A method of obtaining precise absolute time transfer from a satellite according to an embodiment comprises: receiving a precision time signal from a satellite, wherein the precision time signal comprises a periodic repeating code; determining a timing phase of the code; receiving additional aiding information; and using the timing phase and the additional aiding information to determine a precise absolute time.
    Type: Application
    Filed: July 9, 2010
    Publication date: June 23, 2011
    Applicant: THE BOEING COMPANY
    Inventors: Clark E. Cohen, David A. Whelan, Robert W. Brumley, Gregory M. Gutt, Barton G. Ferrell
  • Patent number: 7952518
    Abstract: Systems and methods according to various embodiments provide for navigation in attenuated environments by integrating satellite signals with Internet hotspot signals. In one embodiment, a receiver unit adapted to perform geolocation comprises an antenna adapted to receive a precision time signal from a satellite and receive additional aiding information from a wireless network station, wherein the precision time signal comprises a periodic repeating code.
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: May 31, 2011
    Assignee: The Boeing Company
    Inventors: David A. Whelan, Robert W. Brumley, Gregory M. Gutt, Barton G. Ferrell
  • Patent number: 7904243
    Abstract: Data from GPS satellites within the field of view of a ground station are retransmitted to LEO satellites, such as Iridium satellites, and cross-linked if necessary before being transmitted to a user. The user is then able to combine the fed-forward data with data received directly from GPS satellites in order to resolve errors due to interference or jamming. Iridium and data aiding thus provides a means for extending GPS performance under a variety of data-impaired conditions because it can provide certain aiding information over its data link in real time.
    Type: Grant
    Filed: June 22, 2004
    Date of Patent: March 8, 2011
    Assignee: The Boeing Company
    Inventors: Clark Cohen, Bart Ferrell, Greg Gutt, David Whelan
  • Publication number: 20110032144
    Abstract: Data from GPS satellites within the field of view of a ground station are retransmitted to LEO satellites, such as Iridium satellites, and cross-linked if necessary before being transmitted to a user. The user is then able to combine the fed-forward data with data received directly from GPS satellites in order to resolve errors due to interference or jamming. Iridium and data aiding thus provides a means for extending GPS performance under a variety of data-impaired conditions because it can provide certain aiding information over its data link in real time.
    Type: Application
    Filed: October 22, 2010
    Publication date: February 10, 2011
    Applicant: THE BOEING COMPANY
    Inventors: Clark Cohen, Bart Ferrell, Greg Gutt, David Whelan
  • Patent number: 7859455
    Abstract: Various techniques are provided for calibrating a frequency of a local clock using a satellite signal. In one example, a method of transferring frequency stability from a satellite to a device includes receiving a signal from the satellite. The method also includes determining a code phase from the satellite signal. The method further includes receiving aiding information. In addition, the method includes calibrating a frequency of a local clock of the device using the code phase and the aiding information to substantially synchronize the local clock frequency with a satellite clock frequency.
    Type: Grant
    Filed: January 6, 2009
    Date of Patent: December 28, 2010
    Assignee: The Boeing Company
    Inventors: Gregory M. Gutt, David A. Whelan, Barton G. Ferrell, Robert W. Brumley, Christopher J. Martens, Anne T. Haddad
  • Patent number: 7836765
    Abstract: Sensing motion of multiple degrees of freedom for an integral inertial measurement unit provided through the operation of a single centrally mounted planar disc resonator having a single driven mode in a single vacuum enclosure is disclosed. The resonator comprises a circumferentially slotted disc having multiple internal capacitive electrodes within the slots in order to excite a single in-plane driven vibration and sense in-plane vibration modes or motion of the resonator. In addition, vertical electrodes disposed below and/or above the resonator may also be used to sense out-of-plane vibration or motion. Acceleration sensing in three orthogonal axes can be obtained by sensing two lateral modes of the disc resonator in the plane of the disc from the internal electrodes and a vertical mode from the vertical electrodes.
    Type: Grant
    Filed: July 31, 2007
    Date of Patent: November 23, 2010
    Assignee: The Boeing Company
    Inventors: A. Dorian Challoner, David Whelan
  • Publication number: 20100220007
    Abstract: A method for estimating a precise position of a user device from signals from a low earth orbit (LEO) satellite includes receiving at least one carrier signal at a user device, each carrier signal being transmitted a distinct LEO satellite. The user device processes the carrier signals to obtain a first carrier phase information. The user device recalls an inertial position fix derived at an inertial reference unit. The user device derives a position of the user device based on the inertial position fix and the first carrier phase information.
    Type: Application
    Filed: February 6, 2009
    Publication date: September 2, 2010
    Inventors: David A. Whelan, Clark E. Cohen, Greg M. Gutt, Barton G. Ferrell
  • Publication number: 20100171652
    Abstract: Various techniques are provided for calibrating a frequency of a local clock using a satellite signal. In one example, a method of transferring frequency stability from a satellite to a device includes receiving a signal from the satellite. The method also includes determining a code phase from the satellite signal. The method further includes receiving aiding information. In addition, the method includes calibrating a frequency of a local clock of the device using the code phase and the aiding information to substantially synchronize the local clock frequency with a satellite clock frequency.
    Type: Application
    Filed: January 6, 2009
    Publication date: July 8, 2010
    Inventors: Gregory M. Gutt, David A. Whelan, Barton G. Ferrell, Robert W. Brumley, Christopher J. Martens, Anne T. Haddad
  • Patent number: 7728759
    Abstract: A method for obtaining weather related information for a portion of the Earth's atmosphere between a mobile platform traversing over a predetermined surface portion of the Earth, and at least one satellite from a satellite constellation. The method involves modifying at least one satellite from the constellation of satellites to include time and location information in wireless signals that are transmitted in real time by the one satellite. The mobile platform receives the wireless signals from the one satellite. An occultation system carried on the mobile platform analyzes the time and position information, in addition to location information pertaining to a real time location of the mobile platform, and to derive real time atmospheric weather related information for a geographic area between the mobile platform and the one satellite.
    Type: Grant
    Filed: January 25, 2008
    Date of Patent: June 1, 2010
    Assignee: The Boeing Company
    Inventors: Brian J. Tillotson, David A. Whelan
  • Publication number: 20100024546
    Abstract: Sensing motion of multiple degrees of freedom for an integral inertial measurement unit provided through the operation of a single centrally mounted planar disc resonator having a single driven mode in a single vacuum enclosure is disclosed. The resonator comprises a circumferentially slotted disc having multiple internal capacitive electrodes within the slots in order to excite a single in-plane driven vibration and sense in-plane vibration modes or motion of the resonator. In addition, vertical electrodes disposed below and/or above the resonator may also be used to sense out-of-plane vibration or motion. Acceleration sensing in three orthogonal axes can be obtained by sensing two lateral modes of the disc resonator in the plane of the disc from the internal electrodes and a vertical mode from the vertical electrodes.
    Type: Application
    Filed: July 31, 2007
    Publication date: February 4, 2010
    Applicant: The Boeing Company
    Inventors: A. Dorian Challoner, David Whelan
  • Publication number: 20090315769
    Abstract: Systems and methods according to various embodiments provide for navigation in attenuated environments by integrating satellite signals with Internet hotspot signals. In one embodiment, a receiver unit adapted to perform geolocation comprises an antenna adapted to receive a precision time signal from a satellite and receive additional aiding information from a wireless network station, wherein the precision time signal comprises a periodic repeating code.
    Type: Application
    Filed: May 30, 2008
    Publication date: December 24, 2009
    Inventors: David A. Whelan, Robert W. Brumley, Gregory M. Gutt, Barton G. Ferrell