Patents by Inventor David William Burns

David William Burns has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9465429
    Abstract: A multifunctional pixel is disclosed. The multifunctional pixel may include a display pixel, a photoelectric sensor, and a second sensor. The second sensor may include one of the following: an ultrasonic sensor and an infrared sensor. The display pixel, the photoelectric sensor, and the second sensor may be located in the multifunctional pixel.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: October 11, 2016
    Assignee: QUALCOMM Incorporated
    Inventors: Jack Conway Kitchens, II, John Keith Schneider, David William Burns, Suryaprakash Ganti
  • Patent number: 9455560
    Abstract: Disclosed is a wall mount enclosure and sealing assembly for electrical devices, the enclosure comprises a housing defining an interior that is accessible from an opening in a front side and configured to support electronic equipment therein. A closure door is operatively mounted to the enclosure in a closed position to prevent outside access through the opening in the front side, the closure door including an inwardly facing portion generally facing towards the front side around all or at least a portion of a periphery of the door, the inwardly facing portion extending laterally outward of the periphery of the opening. A gasket engages at least part of the inwardly facing portion of the closure door with a seal portion or first portion pressed by the inwardly facing portion of the closure door when the closure door is in the closed position to form a seal between the front side and the inwardly facing portion of the closure door to seal the interior of the enclosure.
    Type: Grant
    Filed: April 8, 2014
    Date of Patent: September 27, 2016
    Assignee: PEPPERL+FUCHS, INC.
    Inventors: Steve Jopek, Matthew W. Pavlik, David William Burns, Jr.
  • Publication number: 20160246396
    Abstract: An object detection system for capturing one or more sensor images of an object is provided that includes a touch system including a touch-sensitive screen and a display of a device. The object detection system also includes a sensor system including a sensor array and a processing component. The sensor array is coupled to the touch-sensitive screen, and the processing component is configured to capture one or more images of an object when the object is detected by the touch-sensitive screen. At least a portion of the sensor array overlaps with at least a portion of the touch-sensitive screen.
    Type: Application
    Filed: February 20, 2015
    Publication date: August 25, 2016
    Inventors: Timothy Alan Dickinson, David William Burns, Fitzgerald John Archibald, John Keith Schneider, Ravit Dennis, Lior Barenboim
  • Publication number: 20160227411
    Abstract: A mobile device may include a plurality of sensors and a processor. The processor may be configured to determine trust data for an asset based upon inputs from the plurality of sensors, determine whether an asset is accessible or not accessible based upon evaluating the trust data with a trust determination algorithm, and continuously update the trust data to continue to allow access to the asset or revoke access to the asset based upon the inputs from the plurality of sensors.
    Type: Application
    Filed: April 8, 2015
    Publication date: August 4, 2016
    Inventors: Laurence LUNDBLADE, Mark BAPST, George Michael MILIKICH, Jon Azen, Ian BRETTELL, Eliza Yingzi DU, Jonathan GRIFFITHS, Suryaprakash GANTI, Samir GUPTA, David William Burns, Muhammed Ibrahim SEZAN
  • Patent number: 9323393
    Abstract: Various techniques and apparatuses are disclosed that provide for pixelated display modules that integrate an ultrasonic fingerprint or biometric sensing capability. In some implementations, the ultrasonic fingerprint sensor and the display components of the display module may share a common backplane. In some implementations, the ultrasonic fingerprint sensor may share a flex cable with other components in the display module. In some implementations, the ultrasonic fingerprint sensor may leverage conductive traces on a cover glass used to provide for touch input to the display module.
    Type: Grant
    Filed: November 4, 2013
    Date of Patent: April 26, 2016
    Assignee: QUALCOMM Incorporated
    Inventors: Kostadin Dimitrov Djordjev, Leonard Eugene Fennell, Nicholas Ian Buchan, David William Burns, Samir K. Gupta, Sanghoon Bae
  • Publication number: 20160107194
    Abstract: A piezoelectric micromechanical ultrasonic transducer (PMUT) includes a diaphragm disposed over a cavity, the diaphragm including a piezoelectric layer stack including a piezoelectric layer, a first electrode electrically coupled with transceiver circuitry, and a second electrode electrically coupled with the transceiver circuitry. The first electrode may be disposed in a first portion of the diaphragm, and the second electrode may be disposed in a second, separate, portion of the diaphragm. Each of the first and the second electrode is disposed on or proximate to a first surface of the piezoelectric layer, the first surface being opposite from the cavity. The PMUT is configured to transmit first ultrasonic signals by way of the first electrode during a first time period and to receive second ultrasonic signals by way of the second electrode during a second time period, the first time period and the second time period being at least partially overlapping.
    Type: Application
    Filed: October 14, 2015
    Publication date: April 21, 2016
    Inventors: Hrishikesh Vijaykumar Panchawagh, Hao-Yen Tang, Yipeng Lu, Kostadin Dimitrov Djordjev, Suryaprakash Ganti, David William Burns, Ravindra Vaman Shenoy, Jon Bradley Lasiter, Nai-Kuei Kuo, Firas Sammoura
  • Publication number: 20160070967
    Abstract: A method of determining whether a biometric object is part of a live individual is described. In one such method, image information is acquired from the biometric object by using a sensor, such as an ultrasonic sensor. The image information may be analyzed in at least two analysis stages. One of the analysis stages may be a temporal analysis stage that analyzes changes in the image information obtained during a time period throughout which the biometric object was continuously available to the sensor. For example, a dead/alive stage may analyze differences between image information taken at two different times in order to identify changes from one time to the next. Other stages may focus on aspects of a particular image information set, rather than seeking to assess changes over time. These other stages seek to determine whether an image information set exhibits characteristics similar to those of a live biometric object.
    Type: Application
    Filed: September 3, 2015
    Publication date: March 10, 2016
    Inventors: Eliza Yingzi Du, Ming Yu Chen, Esra Vural, Kwokleung Chan, David William Burns, Suryaprakash Ganti, John Keith Schneider, Saurav Bandyopadhyay, Jin Gu
  • Publication number: 20160063300
    Abstract: A fingerprint sensing apparatus includes a fingerprint sensor system and a control system capable of receiving fingerprint sensor data from the fingerprint sensor system. The control system may determine, according to the fingerprint sensor data, whether an object is positioned proximate a portion of the fingerprint sensor system. If the control system determines that an object is positioned proximate the portion of the fingerprint sensor system, the control system may determine whether the object is a finger or a non-finger object. The control system may determine whether the fingerprint sensor data includes fingerprint image information of at least an image quality threshold.
    Type: Application
    Filed: August 31, 2014
    Publication date: March 3, 2016
    Inventors: Eliza Yingzi Du, Ming Yu Chen, Esra Vural, Kwokleung Chan, Suryaprakash Ganti, John Keith Schneider, David William Burns
  • Publication number: 20160063294
    Abstract: A fingerprint sensing apparatus may include a fingerprint sensor system and a control system. The fingerprint sensor system may include an ultrasonic sensor array. The control system may be capable of receiving fingerprint sensor data from the fingerprint sensor system and of determining whether an object is positioned proximate a portion of the fingerprint sensor system. The control system may be capable of determining an acoustic impedance of at least a portion of an object that is positioned proximate the fingerprint sensor system. The control system may be capable of determining whether the acoustic impedance is within an acoustic impedance range corresponding to that of skin and of determining, based at least in part on the acoustic impedance, whether the object is a finger.
    Type: Application
    Filed: August 31, 2014
    Publication date: March 3, 2016
    Inventors: Eliza Yingzi Du, Ming Yu Chen, Esra Vural, Kwokleung Chan, Suryaprakash Ganti, John Keith Schneider, David William Burns
  • Publication number: 20160063296
    Abstract: A fingerprint sensing apparatus may include a fingerprint sensor system and a control system capable of receiving fingerprint sensor data from the fingerprint sensor system. The control system may be capable of determining fingerprint sensor data blocks for at least a portion of the fingerprint sensor data and of calculating statistical variance values for fingerprint sensor data corresponding to each of the fingerprint sensor data blocks. The control system may be capable of determining, based at least in part the statistical variance values, whether an object is positioned proximate a portion of the fingerprint sensor system.
    Type: Application
    Filed: October 30, 2015
    Publication date: March 3, 2016
    Inventors: Eliza Yingzi Du, Ming Yu Chen, Esra Vural, Kwokleong Chan, Suryaprakash Ganti, John Keith Schneider, David William Burns
  • Publication number: 20160019408
    Abstract: Techniques for testing ultrasonic fingerprint sensors include operating a fingerprint impress simulator that may cyclically press a contact pad of the simulator against a platen of an ultrasonic sensor under test. A control electronics arrangement may operate the ultrasonic sensor under test and the fingerprint impress simulator, and may receive ultrasonic image data from the ultrasonic sensor under test. The ultrasonic sensor may include an ultrasonic transmitter and an ultrasonic sensor array disposed between the ultrasonic transmitter and the platen. The control electronics arrangement may cause the ultrasonic transmitter to emit an ultrasonic pulse, and may receive ultrasonic image data from the ultrasonic sensor array, the ultrasonic image data being converted from a detected portion of the ultrasonic pulse.
    Type: Application
    Filed: November 25, 2014
    Publication date: January 21, 2016
    Inventors: Jianwei Liu, Norman Satoru Himaka, Sherman Sebastian Antao, Micah Timothy Lawrence, David William Burns, Kostadin Dimitrov Djordjev
  • Patent number: 9195879
    Abstract: A fingerprint sensing apparatus may include a fingerprint sensor system and a control system capable of receiving fingerprint sensor data from the fingerprint sensor system. The control system may be capable of determining fingerprint sensor data blocks for at least a portion of the fingerprint sensor data and of calculating statistical variance values for fingerprint sensor data corresponding to each of the fingerprint sensor data blocks. The control system may be capable of determining, based at least in part the statistical variance values, whether an object is positioned proximate a portion of the fingerprint sensor system.
    Type: Grant
    Filed: August 31, 2014
    Date of Patent: November 24, 2015
    Assignee: QUALCOMM Incorporated
    Inventors: Eliza Yingzi Du, Ming Yu Chen, Esra Vural, Kwokleung Chan, Suryaprakash Ganti, John Keith Schneider, David William Burns
  • Publication number: 20150242605
    Abstract: A mobile device may perform continuous authentication with an authenticating entity. The mobile device may include a set of biometric and non-biometric sensors and a processor. The processor may be configured to receive sensor data from the set of sensors, form authentication information from the received sensor data, and continuously update the authentication information.
    Type: Application
    Filed: October 24, 2014
    Publication date: August 27, 2015
    Inventors: Eliza Yingzi Du, Suryaprakash Ganti, Muhammed Ibrahim Sezan, Jonathan Charles Griffiths, David William Burns, Samir Gupta
  • Publication number: 20150241393
    Abstract: Embodiments of an ultrasonic button and methods for using the ultrasonic button are disclosed. In one embodiment, an ultrasonic button may include an ultrasonic transmitter configured to transmit an ultrasonic wave, a piezoelectric receiver layer configured to receive a reflected wave of the ultrasonic wave, a platen layer configured to protect the ultrasonic transmitter and the piezoelectric receiver layer, a first matching layer configured to match an acoustic impedance of the platen layer with an acoustic impedance of ridges of a finger, and an ultrasonic sensor array configured to detect the finger using the reflected wave.
    Type: Application
    Filed: February 20, 2015
    Publication date: August 27, 2015
    Inventors: Suryaprakash Ganti, Srikanth Chilukuru, Livingstone Song, Kostadin Dimitrov Djordjev, Jack Conway Kitchens, John Schneider, Nicholas Ian Buchan, Leonard Eugene Fennell, Hrishikesh Vijaykumar Panchawagh, Ashish Hinger, Nai-Kuei Kuo, Kollengode Narayanan, Samir Kumar Gupta, Timothy Dickinson, Max Hamel, David William Burns, Muhammed Ibrahim Sezan, Eugene Dantsker
  • Publication number: 20150242601
    Abstract: A mobile device may perform authentication with an authenticating entity. The mobile device may comprise a plurality of sensors and a processor. The processor may be configured to: receive an authentication request from the authenticating entity requesting authentication information; and determine if the authentication request satisfies predefined user privacy preferences. If so, the processor may be configured to: retrieve the authentication information from at least one sensor to form a trust vector in response to the authentication request and to command transmission of the trust vector to the authenticating entity for authentication.
    Type: Application
    Filed: October 24, 2014
    Publication date: August 27, 2015
    Inventors: Jonathan Charles Griffiths, Eliza Yingzi Du, David William Burns, Muhammed Ibrahim Sezan
  • Publication number: 20150219457
    Abstract: This disclosure provides systems, methods and apparatus, including computer programs encoded on computer storage media, for making and using accelerometers. Some such accelerometers include a substrate, a first plurality of electrodes, a second plurality of electrodes, a first anchor attached to the substrate, a frame and a proof mass. The substrate may extend substantially in a first plane. The proof mass may be attached to the frame, may extend substantially in a second plane and may be substantially constrained for motion along first and second axes. The frame may be attached to the first anchor, may extend substantially in a second plane and may be substantially constrained for motion along the second axis. A lateral movement of the proof mass in response to an applied lateral acceleration along the first or second axes may result in a change in capacitance at the first or second plurality of electrodes.
    Type: Application
    Filed: April 13, 2015
    Publication date: August 6, 2015
    Inventors: Philip Jason Stephanou, David William Burns, Ravindra Vaman Shenoy
  • Publication number: 20150205443
    Abstract: This disclosure provides systems, methods and apparatus for a touch screens configured to determine a position of a touch event by selectively redirecting light to correlated locations on a light sensor. In one aspect, the touch screen apparatus can include a light guide forming a touch interface, a light source for injecting light into the light guide, a light sensor for detecting the injected light, and a pixilated light-turning layer. The pixilated light-turning layer can include a plurality of light-turning features forming pixels. The pixels can receive incident light corresponding to the emitted light scattered by an object contacting the light guide. The pixels can redirect the incident scattered light towards the light sensor such that light selectively propagates to one or more correlated light receiving locations. A processor can map the light receiving location to an area contacted by the object, thereby determining a position of a touch event.
    Type: Application
    Filed: March 30, 2015
    Publication date: July 23, 2015
    Inventors: Russell Wayne Gruhlke, Ye Yin, Lai Wang, David William Burns
  • Publication number: 20150169136
    Abstract: An apparatus may include a one- or two-dimensional array of micromechanical ultrasonic transducer (PMUT) elements positioned below, beside, with, on, or above a backplane of a visual display. The backplane may be a thin-film transistor (TFT) backplane. The array of PMUT elements may be a piezoelectric micromechanical ultrasonic transducer (PMUT) array or a capacitive micromechanical ultrasonic transducer (CMUT) array. The PMUT array may be configurable to operate in modes corresponding to multiple frequency ranges. When operating in the low-frequency mode, the apparatus may be capable of gesture detection. A high-frequency mode may include a fingerprint sensor mode or a stylus detection mode.
    Type: Application
    Filed: December 12, 2014
    Publication date: June 18, 2015
    Inventors: Suryaprakash Ganti, David William Burns, Jonathan Charles Griffiths
  • Publication number: 20150165479
    Abstract: A piezoelectric micromechanical ultrasonic transducer (PMUT) includes a multilayer stack disposed on a substrate. The multilayer stack may include an anchor structure disposed over the substrate, a piezoelectric layer stack disposed over the anchor structure, and a mechanical layer disposed proximate to the piezoelectric layer stack. The piezoelectric layer stack may be disposed over a cavity. The mechanical layer may seal the cavity and, together with the piezoelectric layer stack, is supported by the anchor structure and forms a membrane over the cavity, the membrane being configured to undergo one or both of flexural motion and vibration when the PMUT receives or transmits ultrasonic signals.
    Type: Application
    Filed: December 12, 2014
    Publication date: June 18, 2015
    Inventors: Jon Bradley Lasiter, Ravindra Vaman Shenoy, Evgeni Petrovich Gousev, Hrishikesh Panchawagh, David William Burns, Nai-Kuei Kuo, Jonathan Charles Griffiths, Suryaprakash Ganti
  • Patent number: 9032796
    Abstract: This disclosure provides systems, methods and apparatus, including computer programs encoded on computer storage media, for making and using accelerometers. Some such accelerometers include a substrate, a first plurality of electrodes, a second plurality of electrodes, a first anchor attached to the substrate, a frame and a proof mass. The substrate may extend substantially in a first plane. The proof mass may be attached to the frame, may extend substantially in a second plane and may be substantially constrained for motion along first and second axes. The frame may be attached to the first anchor, may extend substantially in a second plane and may be substantially constrained for motion along the second axis. A lateral movement of the proof mass in response to an applied lateral acceleration along the first or second axes may result in a change in capacitance at the first or second plurality of electrodes.
    Type: Grant
    Filed: December 30, 2010
    Date of Patent: May 19, 2015
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventors: Philip Jason Stephanou, David William Burns, Ravindra Vaman Shenoy