Patents by Inventor David William Vernooy

David William Vernooy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8588558
    Abstract: A circuit includes a flexible circuit having an optical waveguide embedded therein, a first device attached to the flexible circuit and configured to convert a first electrical signal to an optical signal, the first device positioned to emit the optical signal to an input end of the optical waveguide, and a second device attached to the flexible circuit and configured to convert the optical signal into a second electrical signal, the second device positioned to receive the optical signal from an output end of the optical waveguide.
    Type: Grant
    Filed: December 5, 2008
    Date of Patent: November 19, 2013
    Assignee: General Electric Company
    Inventors: David William Vernooy, Samhita Dasgupta
  • Patent number: 8476105
    Abstract: In one aspect of the present invention, a method is provided. The method includes disposing a substantially amorphous cadmium tin oxide layer on a support; and thermally processing the substantially amorphous cadmium tin oxide layer in an atmosphere substantially free of cadmium from an external source to form a transparent layer, wherein the transparent layer has an electrical resistivity less than about 2×10?4 Ohm-cm. Method of making a photovoltaic device is also provided.
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: July 2, 2013
    Assignee: General Electric Company
    Inventors: Holly Ann Blaydes, George Theodore Dalakos, David William Vernooy, Allan Robert Northrup, Juan Carlos Rojo, Peter Joel Meschter, Hongying Peng, Hongbo Cao, Yangang Andrew Xi, Robert Dwayne Gossman, Anping Zhang
  • Publication number: 20130165786
    Abstract: An ultrasound system includes an optical conduit adapted to transmit an optical signal between a first end of the optical conduit and a second end of the optical conduit. The ultrasound system also includes a console coupled to the first end of the optical conduit and having an optical power source adapted to generate the optical signal. Further, the ultrasound system includes an ultrasound probe coupled to the second end of the optical conduit and having power conversion circuitry adapted to receive the optical signal and to convert the optical signal into electrical power.
    Type: Application
    Filed: December 21, 2011
    Publication date: June 27, 2013
    Applicant: General Electronic Company
    Inventors: Bruno Hans Haider, David William Vernooy
  • Publication number: 20130109124
    Abstract: In one aspect of the present invention, a method is included. The method includes thermally processing an assembly to form at least one transparent layer. The assembly includes a first panel including a first layer disposed on a first support and a second panel including a second layer disposed on a second support, wherein the second panel faces the first panel, and wherein the first layer and the second layer include substantially amorphous cadmium tin oxide. Method of making a photovoltaic device is also included.
    Type: Application
    Filed: October 28, 2011
    Publication date: May 2, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Hongying Peng, Juan Carlos Rojo, Hongbo Cao, George Theodore Dalakos, Holly Ann Blaydes, David William Vernooy, Mark Jeffrey Pavol, Jae Hyuk Her, Hong Piao, Robert Dwayne Gossman, Scott Daniel Feldman-Peabody, Yangang Andrew Xi
  • Patent number: 8368380
    Abstract: A stand-off sensor assembly is provided. The sensor assembly includes a plurality of electron state definers for generating resonant tunneling current in response to the electric field, wherein the electron state definers include at least one variable characteristic such that a change in the variable characteristic affects the tunneling current, and a monitor for monitoring a change in the tunneling current exiting an electron state definer based on a change in the variable characteristic of the tunneling device.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: February 5, 2013
    Assignee: General Electric Company
    Inventors: Ertugrul Berkcan, David William Vernooy
  • Publication number: 20120249281
    Abstract: An inductor and an eddy current sensor including an inductor are disclosed. The inductor includes a patterned metal layer arranged on an insulating substrate. The inductor is capable of sensing eddy current within a high temperature region.
    Type: Application
    Filed: April 4, 2011
    Publication date: October 4, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Lam CAMPBELL, Aaron J. Knobloch, Sherrie Clark, Dan Tho Lu, Richard Dale Slates, David William Vernooy
  • Publication number: 20120164785
    Abstract: In one aspect of the present invention, a method is provided. The method includes disposing a substantially amorphous cadmium tin oxide layer on a support; and thermally processing the substantially amorphous cadmium tin oxide layer in an atmosphere substantially free of cadmium from an external source to form a transparent layer, wherein the transparent layer has an electrical resistivity less than about 2×10?4 Ohm-cm. Method of making a photovoltaic device is also provided.
    Type: Application
    Filed: December 22, 2010
    Publication date: June 28, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Holly Ann Blaydes, George Theodore Dalakos, David William Vernooy, Allan Robert Northrup, Juan Carlos Rojo, Peter Joel Meschter, Hongying Peng, Hongbo Cao, Yangang Andrew Xi, Robert Dwayne Gossman, Anping Zhang
  • Patent number: 8199334
    Abstract: An optical pressure sensor interrogation system is provided. The system includes a light source for providing an optical signal to an optical pressure sensor and an optical coupler for receiving a reflected signal from the optical pressure sensor. The optical coupler splits the reflected signal and provides a first portion of the reflected signal to a first optical detector. The system further includes a filter for receiving a second portion of the reflected signal and providing a filtered signal to a second optical detector and a processing circuitry configured to obtain pressure based on a division or a subtraction of light intensities of the first and the second optical detector output signals. The processing circuitry is further configured to provide a feedback signal to the light source to control a wavelength of the optical signal.
    Type: Grant
    Filed: March 30, 2009
    Date of Patent: June 12, 2012
    Assignee: General Electric Company
    Inventors: David William Vernooy, Glen Peter Koste, Aaron Jay Knobloch
  • Publication number: 20110315220
    Abstract: Methods are provided for forming a back contact for a photovoltaic cell that includes at least one semiconductor layer. One method includes depositing at least one back contact material on a metal contact. The back contact material comprises a metal nitride or a metal phosphide. The method further includes depositing an absorber layer comprising cadmium and tellurium above the back contact material and thermally processing the back contact material, such that the back contact material interacts with the absorber layer to form an interlayer that lowers a contact resistance for the photovoltaic cell. A photovoltaic cell is also provided and includes comprising a metal contact, at least one back contact material disposed on the metal contact, and an absorber layer comprising a material comprising cadmium and tellurium disposed above the back contact material.
    Type: Application
    Filed: June 29, 2010
    Publication date: December 29, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Bastiaan Arie Korevaar, Juan Carlos Rojo, Faisal Razi Ahmad, David William Vernooy
  • Publication number: 20110241648
    Abstract: A stand-off sensor assembly is provided. The sensor assembly includes a plurality of electron state definers for generating resonant tunneling current in response to the electric field, wherein the electron state definers include at least one variable characteristic such that a change in the variable characteristic affects the tunneling current, and a monitor for monitoring a change in the tunneling current exiting an electron state definer based on a change in the variable characteristic of the tunneling device.
    Type: Application
    Filed: March 31, 2010
    Publication date: October 6, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Ertugrul Berkcan, David William Vernooy
  • Patent number: 7966887
    Abstract: A high-temperature pressure sensor is provided. The sensor includes a quartz substrate with a cavity etched on one side. A reflective coating is deposited on at least a portion of the cavity. The sensor further includes a ferrule section coupled to the quartz substrate with the cavity therebetween. The cavity exists in a vacuum, and cavity gap is formed between the reflective metal coating and a surface of the ferrule. The sensor also includes an optical fiber enclosed by the ferrule section and extending from the cavity gap to an opposing end of the ferrule section and a metal casing surrounding the ferrule section and the quartz substrate with an opening for said optical fiber extending therefrom. The pressure applied to the quartz substrate changes the dimensions of the cavity gap and a reflected signal from the reflective coating is processed as a pressure.
    Type: Grant
    Filed: March 26, 2009
    Date of Patent: June 28, 2011
    Assignee: General Electric Company
    Inventors: Aaron Jay Knobloch, David William Vernooy, Weizhuo Li, David Mulford Shaddock, Stacey Joy Kennerly
  • Publication number: 20100245840
    Abstract: An optical pressure sensor interrogation system is provided. The system includes a light source for providing an optical signal to an optical pressure sensor and an optical coupler for receiving a reflected signal from the optical pressure sensor. The optical coupler splits the reflected signal and provides a first portion of the reflected signal to a first optical detector. The system further includes a filter for receiving a second portion of the reflected signal and providing a filtered signal to a second optical detector and a processing circuitry configured to obtain pressure based on a division or a subtraction of light intensities of the first and the second optical detector output signals.
    Type: Application
    Filed: March 30, 2009
    Publication date: September 30, 2010
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: David William Vernooy, Glen Peter Koste, Aaron Jay Knobloch
  • Publication number: 20100242628
    Abstract: A high-temperature pressure sensor is provided. The sensor includes a quartz substrate with a cavity etched on one side. A reflective coating is deposited on at least a portion of the cavity. The sensor further includes a ferrule section coupled to the quartz substrate with the cavity therebetween. The cavity exists in a vacuum, and cavity gap is formed between the reflective metal coating and a surface of the ferrule. The sensor also includes an optical fiber enclosed by the ferrule section and extending from the cavity gap to an opposing end of the ferrule section and a metal casing surrounding the ferrule section and the quartz substrate with an opening for said optical fiber extending therefrom. The pressure applied to the quartz substrate changes the dimensions of the cavity gap and a reflected signal from the reflective coating is processed as a pressure.
    Type: Application
    Filed: March 26, 2009
    Publication date: September 30, 2010
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Aaron Jay Knobloch, David William Vernooy, Weizhuo Li, David Mulford Shaddock, Stacey Joy Kennerly
  • Publication number: 20100189444
    Abstract: A remote sensing system comprises a micro-electromechanical sensor (MEMS) device comprising an optical energy absorbing sensing element that resonates by thermal expansion induced by absorption of optical signals, a remotely located optical source for transmitting driving optical signals to induce resonation in the sensing element, and a remotely located reader circuitry to read an original frequency of the sensing element using reader optical signals for determining a condition to which the MEMS device is exposed.
    Type: Application
    Filed: October 29, 2009
    Publication date: July 29, 2010
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: David William Vernooy, Glen Peter Koste, Aaron Jay Knobloch, Faisal Razi Ahmad
  • Publication number: 20100156629
    Abstract: A remote sensing system comprises a micro-electromechanical sensor (MEMS) device comprising a sensing element, an exciting element to resonate the sensing element at resonant frequency from a remote location by transmitting signals comprising any of acoustic signals, optical signals, radio frequency signals, or magnetic induction signals, and a reader circuitry to read an original frequency of the sensing element from a remote location for determining a condition to which the MEMS device is exposed using signals comprising any of acoustic signals, optical signals, radio frequency signals, or magnetic induction signals.
    Type: Application
    Filed: January 27, 2009
    Publication date: June 24, 2010
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Daniel White Sexton, Glen Peter Koste, Aaron Jay Knobloch, Roderick Gordon Brown, David William Vernooy
  • Publication number: 20100142881
    Abstract: A circuit includes a flexible circuit having an optical waveguide embedded therein, a first device attached to the flexible circuit and configured to convert a first electrical signal to an optical signal, the first device positioned to emit the optical signal to an input end of the optical waveguide, and a second device attached to the flexible circuit and configured to convert the optical signal into a second electrical signal, the second device positioned to receive the optical signal from an output end of the optical waveguide.
    Type: Application
    Filed: December 5, 2008
    Publication date: June 10, 2010
    Inventors: David William Vernooy, Samhita Dasgupta