Patents by Inventor David Wirth

David Wirth has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230079959
    Abstract: Printhead for a 3D manufacturing system that uses metal electrodeposition to construct parts; embodiments utilize a grid of anodes to achieve high quality parts with features that may be small and detailed. To support grids with thousands or millions of anodes, the printhead may use matrix control with row and column drivers similar to display backplanes. Unlike display backplanes where the design goal is to display images using minimal current, the printhead may be optimized for high current density for fast electrodeposition, and for anode longevity. Current density may exceed 1000 mA per cm-squared, at least an order of magnitude greater than that of display backplanes. Anode longevity may be enhanced by using relatively large anodes compared to the grid pitch of the printhead, by lengthening the conductive paths through anodes, or both. Embodiments may be constructed by adding anode and insulation layers on top of matrix-controlled switching circuits.
    Type: Application
    Filed: November 23, 2022
    Publication date: March 16, 2023
    Inventors: David Pain, Andrew Edmonds, Jeffrey Herman, Charles Pateros, David Wirth, Kareemullah Shaik
  • Patent number: 11512404
    Abstract: Printhead for a 3D manufacturing system that uses metal electrodeposition to construct parts; embodiments utilize a grid of anodes to achieve high quality parts with features that may be small and detailed. To support grids with thousands or millions of anodes, the printhead may use matrix control with row and column drivers similar to display backplanes. Unlike display backplanes where the design goal is to display images using minimal current, the printhead may be optimized for high current density for fast electrodeposition, and for anode longevity. Current density may exceed 1000 mA per cm-squared, at least an order of magnitude greater than that of display backplanes. Anode longevity may be enhanced by using relatively large anodes compared to the grid pitch of the printhead, by lengthening the conductive paths through anodes, or both. Embodiments may be constructed by adding anode and insulation layers on top of matrix-controlled switching circuits.
    Type: Grant
    Filed: December 30, 2021
    Date of Patent: November 29, 2022
    Assignee: FABRIC8LABS, INC.
    Inventors: David Pain, Andrew Edmonds, Jeffrey Herman, Charles Pateros, David Wirth, Kareemullah Shaik
  • Publication number: 20220162765
    Abstract: Printhead for a 3D manufacturing system that uses metal electrodeposition to construct parts; embodiments utilize a grid of anodes to achieve high quality parts with features that may be small and detailed. To support grids with thousands or millions of anodes, the printhead may use matrix control with row and column drivers similar to display backplanes. Unlike display backplanes where the design goal is to display images using minimal current, the printhead may be optimized for high current density for fast electrodeposition, and for anode longevity. Current density may exceed 1000 mA per cm-squared, at least an order of magnitude greater than that of display backplanes. Anode longevity may be enhanced by using relatively large anodes compared to the grid pitch of the printhead, by lengthening the conductive paths through anodes, or both. Embodiments may be constructed by adding anode and insulation layers on top of matrix-controlled switching circuits.
    Type: Application
    Filed: December 30, 2021
    Publication date: May 26, 2022
    Inventors: David Pain, Andrew Edmonds, Jeffrey Herman, Charles Pateros, David Wirth
  • Patent number: 11313035
    Abstract: Process for manufacturing a printhead for a 3D manufacturing system that uses metal electrodeposition to construct parts. The printhead may be constructed by depositing layers on top of a backplane that contains control and power circuits. Deposited layers may include insulating layers and an anode layer that contain deposition anodes that are in contact with the electrolyte to drive electrodeposition. Insulating layers may for example be constructed of silicon nitride or silicon dioxide; the anode layer may contain an insoluble conductive material such as platinum group metals and their associated oxides, highly doped semiconducting materials, and carbon based conductors. The anode layer may be deposited using chemical vapor deposition or physical vapor deposition. Alternatively in one or more embodiments the printhead may be constructed by manufacturing a separate anode plane component, and then bonding the anode plane to the backplane.
    Type: Grant
    Filed: November 24, 2021
    Date of Patent: April 26, 2022
    Assignee: FABRIC8LABS, INC.
    Inventors: David Pain, Andrew Edmonds, Jeffrey Herman, Charles Pateros, David Wirth
  • Publication number: 20220081760
    Abstract: Process for manufacturing a printhead for a 3D manufacturing system that uses metal electrodeposition to construct parts. The printhead may be constructed by depositing layers on top of a backplane that contains control and power circuits. Deposited layers may include insulating layers and an anode layer that contain deposition anodes that are in contact with the electrolyte to drive electrodeposition. Insulating layers may for example be constructed of silicon nitride or silicon dioxide; the anode layer may contain an insoluble conductive material such as platinum group metals and their associated oxides, highly doped semiconducting materials, and carbon based conductors. The anode layer may be deposited using chemical vapor deposition or physical vapor deposition. Alternatively in one or more embodiments the printhead may be constructed by manufacturing a separate anode plane component, and then bonding the anode plane to the backplane.
    Type: Application
    Filed: November 24, 2021
    Publication date: March 17, 2022
    Inventors: David Pain, Andrew Edmonds, Jeffrey Herman, Charles Pateros, David Wirth
  • Patent number: 10724146
    Abstract: Printhead for a 3D manufacturing system that uses metal electrodeposition to construct parts; embodiments utilize a grid of anodes to achieve high quality parts with features that may be small and detailed. To support grids with thousands or millions of anodes, the printhead may use matrix control with row and column drivers similar to display backplanes. Unlike display backplanes where the design goal is to display images using minimal current, the printhead may be optimized for high current density for fast electrodeposition, and for anode longevity. Current density may exceed 1000 mA per cm-squared, at least an order of magnitude greater than that of display backplanes. Anode longevity may be enhanced by using relatively large anodes compared to the grid pitch of the printhead, by lengthening the conductive paths through anodes, or both. Embodiments may be constructed by adding anode and insulation layers on top of matrix-controlled switching circuits.
    Type: Grant
    Filed: February 19, 2020
    Date of Patent: July 28, 2020
    Assignee: FABRIC8LABS, INC.
    Inventors: David Pain, Andrew Edmonds, Jeffrey Herman, Charles Pateros, David Wirth
  • Publication number: 20170175427
    Abstract: A door set assembly for use with a door having a latch portion and a magnetized strike plate, comprising a top face, a bottom face, and a protrusion extending below said bottom face of said strike plate. The protrusion is formed by two side walls and a far wall extending from said top face of strike plate and a graded floor angled away from said top face of said strike plate, the combination of said walls and said floors forming a latch receiving channel, such that when the door is swung into the closed position the magnetized strike plate gradually actuates the latch of said latch portion along the entire length of said channel, from a fully retracted position to a fully extended position until said far wall of said strike plate channel holds the latch in place to keep the door in the closed position.
    Type: Application
    Filed: December 2, 2016
    Publication date: June 22, 2017
    Inventor: David Wirth
  • Patent number: 8664433
    Abstract: The compound 4-[3-(2,6-Dimethylbenzyloxy)phenyl]-4-oxobutanoic acid (DPA) is synthesized from 1-[3-(2,6-Dimethylbenzyloxy)-phenyl]-ethanone (DPE) via the intermediate 4-[3-(2,6-Dimethylbenzyloxy)phenyl]-4-oxobulanoic acid ethyl ester (DPAE).
    Type: Grant
    Filed: May 4, 2009
    Date of Patent: March 4, 2014
    Assignee: Wellstat Therapeutics Corporation
    Inventors: Jason P. Chinn, Robert J. Kaufman, Shalini Sharma, David Wirth
  • Patent number: 7182330
    Abstract: Disclosed herein is a sheet feeder for a printer. The sheet feeding device feeds a single sheet into an infeeder of a printer without communicating with the printer. The sheet feeder is equipped with a sensor for detecting when the printer is able to accept a sheet. The sheet feeder is equipped with a programmable timing device that causes the sheet feeder to wait a predetermined amount of time before inserting another sheet into the printer. The predetermined amount of time corresponds to the amount of time needed for the printer to complete printing on a sheet after the sensor has detected that the printer is able to accept a sheet into the infeeder of the printer. The sheet feeder is configured with a gate having an adjustable gap in close proximity to a tray containing a stack of sheets. The gate permits only a single sheet to be fed into the infeeder of the printer at a time.
    Type: Grant
    Filed: December 9, 2002
    Date of Patent: February 27, 2007
    Assignee: Smead Manufacturing Company
    Inventors: Harold Peter Lindelof, Leon David Wirth
  • Publication number: 20040108645
    Abstract: Disclosed herein is a sheet feeder for a printer. The sheet feeding device feeds a single sheet into an infeeder of a printer without communicating with the printer. The sheet feeder is equipped with a sensor for detecting when the printer is able to accept a sheet. The sheet feeder is equipped with a programmable timing device that causes the sheet feeder to wait a predetermined amount of time before inserting another sheet into the printer. The predetermined amount of time corresponds to the amount of time needed for the printer to complete printing on a sheet after the sensor has detected that the printer is able to accept a sheet into the infeeder of the printer. The sheet feeder is configured with a gate having an adjustable gap in close proximity to a tray containing a stack of sheets. The gate permits only a single sheet to be fed into the infeeder of the printer at a time.
    Type: Application
    Filed: December 9, 2002
    Publication date: June 10, 2004
    Applicant: Smead Manufacturing Company
    Inventors: Harold Peter Lindelof, Leon David Wirth
  • Patent number: 4461210
    Abstract: A non-rotating wedge-shaped ink agitator which reciprocates within an ink fountain along the length of an ink fountain roller. The ink agitator has a substantially flat bottom surface, side surfaces extending upwardly and outwardly from the bottom surface and a top surface which slopes toward the end of the agitator adjacent the ink fountain roller.
    Type: Grant
    Filed: August 25, 1983
    Date of Patent: July 24, 1984
    Assignee: Baldwin-Gegenheimer Corporation
    Inventors: John MacPhee, C. Robert Gasparrini, David Wirth
  • Patent number: 4394870
    Abstract: A system for mixing concentrate and water continuously and automatically including a water supply system and a concentrate system which systems feed into a common conduit to mix the concentrate and water to form a fountain solution. The water supply system has a water motor and is interconnected with valves for controlling the flow of water to and from the water motor. The concentrate system includes a concentrate pump and a concentrate supply valve for controlling the flow of concentrate to and from the concentrate pump.The water motor is interconnected with the concentrate pump to thereby drive the concentrate pump and the stroke of the concentrate pump is variable to permit variations in the concentrate and water mixture.The operation of the water system and the concentrate system is controlled by a pneumatic system which is activated by the water motor.
    Type: Grant
    Filed: October 22, 1981
    Date of Patent: July 26, 1983
    Assignee: Baldwin-Gegenheimer Corporation
    Inventors: John MacPhee, David Wirth, John St. John