Patents by Inventor Davide Bisi

Davide Bisi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11973138
    Abstract: Described herein are lateral III-N (e.g., GaN) devices having a III-N depleting layer. A circuit includes a depletion-mode transistor with a source connected to a drain of an enhancement-mode transistor. The gate of the depletion-mode transistor and the gate of the enhancement-mode transistor are biased at zero volts, and the drain of the depletion-mode transistor is biased at positive voltage to block a current in a forward direction. Then, the bias of the gate of the enhancement-mode transistor is changed to a first voltage greater than the threshold voltage of the enhancement-mode transistor and a first current is allowed to flow through the channel in a forward direction. Then, the bias of the gate of the depletion-mode transistor is changed to a second voltage and a second current is allowed to flow through the channel in a forward direction where the second current is greater than the first current.
    Type: Grant
    Filed: January 28, 2022
    Date of Patent: April 30, 2024
    Assignee: Transphorm Technology, Inc.
    Inventors: Geetak Gupta, Umesh Mishra, Davide Bisi, Rakesh K. Lal, David Michael Rhodes
  • Publication number: 20230335464
    Abstract: A semiconductor device comprises a III-N device including an insulating substrate. The insulating substrate includes a first side and a second side. The device further includes a III-N material structure on a first side of the insulating substrate, and a gate electrode, a source electrode, and a drain electrode on a side of the III-N material structure opposite the substrate. A backmetal layer on the second side of the insulating substrate, and a via hole is formed through the III-N material structure and the insulating substrate. A metal formed in the via-hole is electrically connected to the drain electrode on the first side of the substrate and electrically connected to the backmetal layer on the second side of the substrate.
    Type: Application
    Filed: September 17, 2021
    Publication date: October 19, 2023
    Inventors: Geetak Gupta, Umesh Mishra, Davide Bisi, David Michael Rhodes, Rakesh K. Lal, Carl Joseph Neufeld
  • Publication number: 20230299190
    Abstract: Described herein are lateral III-N (e.g. GaN) devices having a III-N depleting layer, for which the III-N material is formed in an N-polar orientation. The III-N device includes a III-N layer structure comprising a III-N channel layer between a III-N barrier layer and a p-type III-N depleting layer. The III-N channel layer includes a 2DEG channel formed therein. The III-N device includes a source electrode and a drain electrode, each of which being electrically connected to the 2DEG channel, and a gate electrode between the source and the drain electrodes, the gate being over the III-N layer structure. The p-type III-N depleting layer includes a first portion that is between the gate and the drain electrode and the p-type III-N depleting layer is electrically connected to the gate electrode and electrically isolated from the source and drain electrodes.
    Type: Application
    Filed: July 23, 2021
    Publication date: September 21, 2023
    Inventors: Davide Bisi, Geetak Gupta, Umesh Mishra, Rakesh K. Lal
  • Publication number: 20220157981
    Abstract: Described herein are lateral III-N (e.g., GaN) devices having a III-N depleting layer. A circuit includes a depletion-mode transistor with a source connected to a drain of an enhancement-mode transistor. The gate of the depletion-mode transistor and the gate of the enhancement-mode transistor are biased at zero volts, and the drain of the depletion-mode transistor is biased at positive voltage to block a current in a forward direction. Then, the bias of the gate of the enhancement-mode transistor is changed to a first voltage greater than the threshold voltage of the enhancement-mode transistor and a first current is allowed to flow through the channel in a forward direction. Then, the bias of the gate of the depletion-mode transistor is changed to a second voltage and a second current is allowed to flow through the channel in a forward direction where the second current is greater than the first current.
    Type: Application
    Filed: January 28, 2022
    Publication date: May 19, 2022
    Inventors: Geetak Gupta, Umesh Mishra, Davide Bisi, Rakesh K. Lal, David Michael Rhodes
  • Publication number: 20200343375
    Abstract: A lateral III-N device has a vertical gate module with III-N material orientated in an N-polar or a group-III polar orientation. A III-N material structure has a III-N buffer layer, a III-N barrier layer, and a III-N channel layer. A compositional difference between the III-N barrier layer and the III-N channel layer causes a 2DEG channel to be induced in the III-N channel layer. A p-type III-N body layer is disposed over the III-N channel layer in a source side access region but not over a drain side access region. A n-type III-N capping layer over the p-type III-N body layer. A source electrode that contacts the n-type III-N capping layer is electrically connected to the p-type III-N body layer and is electrically isolated from the 2DEG channel when the gate electrode is biased relative to the source electrode at a voltage that is below a threshold voltage.
    Type: Application
    Filed: July 8, 2020
    Publication date: October 29, 2020
    Inventors: Umesh Mishra, Davide Bisi, Geetak Gupta, Carl Joseph Neufeld, Brian L. Swenson, Rakesh K. Lal
  • Patent number: 10756207
    Abstract: A lateral III-N device has a vertical gate module with III-N material orientated in an N-polar or a group-III polar orientation. A III-N material structure has a III-N buffer layer, a III-N barrier layer, and a III-N channel layer. A compositional difference between the III-N barrier layer and the III-N channel layer causes a 2DEG channel to be induced in the III-N channel layer. A p-type III-N body layer is disposed over the III-N channel layer in a source side access region but not over a drain side access region. A n-type III-N capping layer over the p-type III-N body layer. A source electrode that contacts the n-type III-N capping layer is electrically connected to the p-type III-N body layer and is electrically isolated from the 2DEG channel when the gate electrode is biased relative to the source electrode at a voltage that is below a threshold voltage.
    Type: Grant
    Filed: October 10, 2019
    Date of Patent: August 25, 2020
    Assignee: Transphorm Technology, Inc.
    Inventors: Umesh Mishra, Davide Bisi, Geetak Gupta, Carl Joseph Neufeld, Brian L. Swenson, Rakesh K. Lal
  • Publication number: 20200119179
    Abstract: A lateral III-N device has a vertical gate module with III-N material orientated in an N-polar or a group-III polar orientation. A III-N material structure has a III-N buffer layer, a III-N barrier layer, and a III-N channel layer. A compositional difference between the III-N barrier layer and the III-N channel layer causes a 2DEG channel to be induced in the III-N channel layer. A p-type III-N body layer is disposed over the III-N channel layer in a source side access region but not over a drain side access region. A n-type III-N capping layer over the p-type III-N body layer. A source electrode that contacts the n-type III-N capping layer is electrically connected to the p-type III-N body layer and is electrically isolated from the 2DEG channel when the gate electrode is biased relative to the source electrode at a voltage that is below a threshold voltage.
    Type: Application
    Filed: October 10, 2019
    Publication date: April 16, 2020
    Inventors: Umesh Mishra, Davide Bisi, Geetak Gupta, Carl Joseph Neufeld, Brian L. Swenson, Rakesh K. Lal