Patents by Inventor Dayu Qu

Dayu Qu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20060109698
    Abstract: A DC-DC power converter has a transformer with a primary side and secondary side. A first power transistor is coupled between a first end of a first winding of the secondary side and a ground terminal. A second power transistor is coupled between a second end of the first winding and the ground terminal. A first driver transistor is coupled to a gate of the first power transistor, and a second driver transistor is coupled to a gate of the second power transistor. A separate driver winding taken off the secondary side of the transformer controls the gates of the first and second driver transistors. First and second inductors are coupled between the opposite ends of the first winding and an output of the power supply. First and second resistors are coupled between the gates of the first and second driver transistors and the ground terminal, respectively.
    Type: Application
    Filed: November 23, 2004
    Publication date: May 25, 2006
    Inventor: Dayu Qu
  • Patent number: 7034647
    Abstract: An integrated magnetic assembly that allows the primary and secondary windings of a transformer and a separate inductor winding to be integrated on a unitary magnetic structure is disclosed. The unitary magnetic structure includes first, second, and third legs that are physically connected and magnetically coupled. The primary and secondary windings of the transformer can be formed on the third leg of the unitary magnetic structure. Alternatively, the primary and secondary windings can be split between the first and second legs. Thus, the primary winding includes first and second primary windings disposed on the first and second legs and the secondary winding includes first and second secondary windings disposed on the first and second legs. The inductor winding may also be formed either on the third leg or it may split into first and second inductor windings and disposed on the first and second legs. In addition, one or more legs may include an energy storage component such as an air gap.
    Type: Grant
    Filed: October 15, 2002
    Date of Patent: April 25, 2006
    Assignee: Northeastern University
    Inventors: Liang Yan, Dayu Qu, Bradley Lehman
  • Patent number: 6989612
    Abstract: A system and method is provided for dynamically controlling output voltage slew rate in a power converter. Preferred embodiments of the present invention operate in accordance with a power converter including at least a slew-rate control lead (a trim lead, a control lead, etc.), an error-amplifier circuit located therein, a slew-rate circuit, and a controller electrically connected to the power converter and adapted to dynamically control the converter's output voltage slew rate through the transmission of a slew-rate signal. In one embodiment of the present invention, the slew-rate circuit is external to the power converter and electrically connected to both a trim lead of the power converter and to the controller. In another embodiment of the present invention, the slew-rate circuit is internal to the power converter and electrically connected to both a control lead of the power converter and to the error-amplifier circuit.
    Type: Grant
    Filed: July 1, 2005
    Date of Patent: January 24, 2006
    Assignee: Power-One, Inc.
    Inventors: Lorenzo Anthony Cividino, Dayu Qu
  • Publication number: 20050242668
    Abstract: A system and method is provided for dynamically controlling output voltage slew rate in a power converter. Preferred embodiments of the present invention operate in accordance with a power converter including at least a slew-rate control lead (a trim lead, a control lead, etc.), an error-amplifier circuit located therein, a slew-rate circuit, and a controller electrically connected to the power converter and adapted to dynamically control the converter's output voltage slew rate through the transmission of a slew-rate signal. In one embodiment of the present invention, the slew-rate circuit is external to the power converter and electrically connected to both a trim lead of the power converter and to the controller. In another embodiment of the present invention, the slew-rate circuit is internal to the power converter and electrically connected to both a control lead of the power converter and to the error-amplifier circuit.
    Type: Application
    Filed: July 1, 2005
    Publication date: November 3, 2005
    Inventors: Lorenzo Cividino, Dayu Qu
  • Patent number: 6914348
    Abstract: A system and method is provided for dynamically controlling output voltage slew rate in a power converter. Preferred embodiments of the present invention operate in accordance with a power converter including at least a slew-rate control lead (a trim lead, a control lead, etc.), an error-amplifier circuit located therein, a slew-rate circuit, and a controller electrically connected to the power converter and adapted to dynamically control the converter's output voltage slew rate through the transmission of a slew-rate signal. In one embodiment of the present invention, the slew-rate circuit is external to the power converter and electrically connected to both a trim lead of the power converter and to the controller. In another embodiment of the present invention, the slew-rate circuit is internal to the power converter and electrically connected to both a control lead of the power converter and to the error-amplifier circuit.
    Type: Grant
    Filed: September 24, 2003
    Date of Patent: July 5, 2005
    Assignee: Power-One Limited
    Inventors: Lorenzo Anthony Cividino, Dayu Qu
  • Publication number: 20050062345
    Abstract: A system and method is provided for dynamically controlling output voltage slew rate in a power converter. Preferred embodiments of the present invention operate in accordance with a power converter including at least a slew-rate control lead (a trim lead, a control lead, etc.), an error-amplifier circuit located therein, a slew-rate circuit, and a controller electrically connected to the power converter and adapted to dynamically control the converter's output voltage slew rate through the transmission of a slew-rate signal. In one embodiment of the present invention, the slew-rate circuit is external to the power converter and electrically connected to both a trim lead of the power converter and to the controller. In another embodiment of the present invention, the slew-rate circuit is internal to the power converter and electrically connected to both a control lead of the power converter and to the error-amplifier circuit.
    Type: Application
    Filed: September 24, 2003
    Publication date: March 24, 2005
    Inventors: Lorenzo Cividino, Dayu Qu
  • Publication number: 20040189432
    Abstract: An integrated magnetic assembly that allows the primary and secondary windings of a transformer and a separate inductor winding to be integrated on a unitary magnetic structure is disclosed. The unitary magnetic structure includes first, second, and third legs that are physically connected and magnetically coupled. The primary and secondary windings of the transformer can be formed on the third leg of the unitary magnetic structure. Alternatively, the primary and secondary windings can be split between the first and second legs. Thus, the primary winding includes first and second primary windings disposed on the first and second legs and the secondary winding includes first and second secondary windings disposed on the first and second legs. The inductor winding may also be formed either on the third leg or it may split into first and second inductor windings and disposed on the first and second legs. In addition, one or more legs may include an energy storage component such as an air gap.
    Type: Application
    Filed: April 9, 2004
    Publication date: September 30, 2004
    Inventors: Liang Yan, Dayu Qu, Bradley Lehman
  • Publication number: 20020146921
    Abstract: A pin connector system includes a pin portion having a first cross-sectional geometry, wherein the pin portion passes through a pin passage in a first printed circuit board. The pin passage has a second cross-sectional geometry, wherein the combination of the first and second cross-sectional geometries forms a first solder passage for allowing solder to flow through the first printed circuit board.
    Type: Application
    Filed: April 9, 2001
    Publication date: October 10, 2002
    Inventors: Qun Lu, Dayu Qu, Alan J. Eaton, Bryant E. Palmer