Patents by Inventor Dayu Zhou

Dayu Zhou has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11604313
    Abstract: A waveguide includes a core and a cladding. The core has an inlet on which light is incident. The core includes a front portion and a rear portion located between the front portion and the inlet. The front portion and the rear portion each have a thickness that is a dimension in a first direction and a width that is a dimension in a second direction. The first direction is orthogonal to a propagation direction of the light. The second direction is orthogonal to the propagation direction of the light and the first direction. The thickness of the front portion decreases with increasing distance from the inlet.
    Type: Grant
    Filed: June 30, 2021
    Date of Patent: March 14, 2023
    Assignee: HEADWAY TECHNOLOGIES, INC.
    Inventors: Yukinori Ikegawa, Dayu Zhou, Koji Shimazawa, Yoshitaka Sasaki, Hiroyuki Ito, Yoji Nomura
  • Publication number: 20230010894
    Abstract: Disclosed in the embodiments of the present application are a microelectrode of a gene sequencing chip, a manufacturing method therefor, and a gene sequencing chip. The microelectrode comprises a substrate, a current collector layer formed on the substrate, and an electrode layer formed on the current collector layer; the current collector layer comprises a transition metal thin film or a nitride thin film thereof or a composite thin film of a transition metal and nitride thereof, and the electrode layer comprises a nitrogen oxide thin film of the transition metal, which is formed on the transition metal thin film or the nitride thin film thereof or the composite thin film of the transition metal and nitride thereof The embodiments of the present application improve the per unit area voltage driving capabilities of a microelectrode in a gene sequencing chip, can meet requirements for an ultra-high number of cycles, and improve the throughput and stability of a gene sequencing chip.
    Type: Application
    Filed: December 11, 2020
    Publication date: January 12, 2023
    Inventors: Yunpeng SU, Dayu ZHOU, Nana SUN, Jiaye GU
  • Publication number: 20230003940
    Abstract: A waveguide includes a core and a cladding. The core has an inlet on which light is incident. The core includes a front portion and a rear portion located between the front portion and the inlet. The front portion and the rear portion each have a thickness that is a dimension in a first direction and a width that is a dimension in a second direction. The first direction is orthogonal to a propagation direction of the light. The second direction is orthogonal to the propagation direction of the light and the first direction. The thickness of the front portion decreases with increasing distance from the inlet.
    Type: Application
    Filed: June 30, 2021
    Publication date: January 5, 2023
    Applicant: HEADWAY TECHNOLOGIES, INC.
    Inventors: Yukinori IKEGAWA, Dayu ZHOU, Koji SHIMAZAWA, Yoshitaka SASAKI, Hiroyuki ITO, Yoji NOMURA
  • Publication number: 20210193401
    Abstract: A supercapacitor with both current collector and electrode based on transition metal nitride and the preparation method therefor is disclosed. First, the substrates were subjected to a standard cleaning technique to remove impurities and contaminations on the surface; then a layer of transition metal nitride film with high density and conductivity was deposited on the surface of substrates as a current collector to transport electrons. By simply adjusting the deposition process parameters, a rough and porous transition metal nitride film with high resistivity was grown directly on the current collector as active electrode material. In this invention, the transition metal nitrides were grown continuously as the current collector and then as the electrode materials, and the properties of these two materials can be tailored easily by changing the deposition process parameters.
    Type: Application
    Filed: November 13, 2019
    Publication date: June 24, 2021
    Inventors: Dayu ZHOU, Nana SUN, Wenwen LIU, Shuyan SHI, Fengyun YU, Xiaoduo HOU, Xiaoxia GAO
  • Patent number: 10943613
    Abstract: A thermally assisted magnetic head including a slider and a light source-unit. The slider includes a slider substrate and a magnetic head part. The light source-unit includes a laser diode and a sub-mount. The magnetic head part includes a medium-opposing surface, a light source-opposing surface and a waveguide which guides laser light from the light source-opposing surface to the medium-opposing surface. The slider substrate includes a light source-cavity formed in a light source-placing surface on which the light source-unit is placed. The light source-cavity includes an opening concave part being formed larger than a mount bottom surface of the sub-mount. The mount bottom surface of the sub-mount is inserted into the opening concave part to be joined to the light source-cavity.
    Type: Grant
    Filed: March 13, 2020
    Date of Patent: March 9, 2021
    Assignees: SAE Magnetics (H.K.) Ltd., Headway Technologies, Inc.
    Inventors: Ryo Hosoi, Takashi Honda, Seiichi Takayama, Sik Fun Chan, Tai Boon Lee, Dayu Zhou
  • Patent number: 10566013
    Abstract: A light source unit for thermally-assisted magnetic head includes a substrate member having a bonding surface, multiple layers formed on the bonding surface and comprising a base layer, a connection pad layer, an insulation layer and a bonding layer; a light source assembly attached on the bonding layer of the substrate member and having a laser diode embedded therein and connected to the connection pad layer on the bonding surface, so as to form a laser diode circuit; and a heater buried in the insulation layer and connected to the connection pad layer, so as to form a heater circuit. The light source unit can maintain stable heat power for facilitating performance of the thermally-assisted magnetic head, and further reduce the sizes of the light source unit and substrate member.
    Type: Grant
    Filed: January 17, 2019
    Date of Patent: February 18, 2020
    Assignees: SAE MAGNETICS (H.K.) LTD., HEADWAY TECHNOLOGIES, INC.
    Inventors: Takashi Honda, Ryo Hosoi, Wah Chun Chan, Makoto Kawato, Dayu Zhou, Koji Shimazawa, Kowang Liu
  • Patent number: 9460740
    Abstract: A thermally assisted magnetic recording head is disclosed having a spot size converter with at least one secondary waveguide adjoining a top or bottom surface of a primary waveguide. Each waveguide has tapered sides but the secondary waveguide is tapered at a greater angle over a shorter taper distance in order to couple propagated light into the primary waveguide before the front end of the taper. The secondary waveguide terminates in a ridge with a fixed width w3 of about 50-170 nm that is between the front end of the taper and the air bearing surface (ABS). The ridge enables transverse magnetic (TM) transmission mode efficiency above 90% even with a typical process misalignment in the cross-track and height directions. The primary waveguide has a front section with width w2 between an end of its tapered sides and the ABS where w2 is substantially larger than w3.
    Type: Grant
    Filed: October 12, 2015
    Date of Patent: October 4, 2016
    Assignee: Headway Technologies, Inc.
    Inventors: Matteo Staffaroni, Xuhui Jin, Weihao Xu, Jianing Zhou, Ya-An Yang, Dayu Zhou
  • Patent number: 9330690
    Abstract: A method of forming a TAMR (Thermal Assisted Magnetic Recording) write head that uses the energy of optical-laser excited plasmons to locally heat a magnetic recording medium and reduce its coercivity and magnetic anisotropy. The magnetic field of the write head is enhanced by the formation of a leading shield that is formed in a concave geometrical shape and partially surrounds the waveguide portion of the head within the concavity, which allows the distal end of the waveguide to extend to the ABS plane of the write head. This arrangement reduces the gap between the shield and the magnetic pole and does not interfere with the ability of the waveguide to efficiently transfer its optical energy to the plasmon generator and, ultimately, to the surface of the magnetic recording medium.
    Type: Grant
    Filed: December 23, 2013
    Date of Patent: May 3, 2016
    Assignee: Headway Technologies, Inc.
    Inventors: Yiming Wang, Tobias Maletzky, Xuhui Jin, Dayu Zhou, Joe Smyth, Moris Dovek
  • Patent number: 8773803
    Abstract: Three structures, and processes for manufacturing them, that improve the performance of a TAMR feature in a magnetic write head are disclosed. This improvement is achieved by making the separation between the edge plasmon generator and the plasmon shield less than the separation between the edge plasmon generator and the optical wave-guide.
    Type: Grant
    Filed: October 18, 2012
    Date of Patent: July 8, 2014
    Assignee: Headway Technologies, Inc.
    Inventors: Xuhui Jin, Hiroyuki Ito, Shigeki Tanemura, Dayu Zhou
  • Patent number: 8755256
    Abstract: A TAMR (Thermal Assisted Magnetic Recording) write head uses the near field energy of optical-laser excited plasmon eigenmodes in a plasmon resonator to locally heat a magnetic recording medium and reduce its coercivity and magnetic anisotropy. The plasmon resonator is formed as a conducting disk-shaped structure with an extending peg that serves to further confine the near fields within a small region of the recording medium. The resonator eigenmodes are excited, through direct or evanescent coupling, by an interference pattern formed by the overlap of optical waves within a dual-channel waveguide, the interference pattern being the result of the waves in one branch being phase-shifted relative to the waves in the other branch.
    Type: Grant
    Filed: November 14, 2012
    Date of Patent: June 17, 2014
    Assignee: Headway Technologies, Inc.
    Inventors: Tobias Maletzky, Xuhui Jin, Yiming Wang, Dayu Zhou, Joe Smyth, Moris Dovek
  • Publication number: 20140133283
    Abstract: A TAMR (Thermal Assisted Magnetic Recording) write head uses the near field energy of optical-laser excited plasmon eigenmodes in a plasmon resonator to locally heat a magnetic recording medium and reduce its coercivity and magnetic anisotropy. The plasmon resonator is formed as a conducting disk-shaped structure with an extending peg that serves to further confine the near fields within a small region of the recording medium. The resonator eigenmodes are excited, through direct or evanescent coupling, by an interference pattern formed by the overlap of optical waves within a dual-channel waveguide, the interference pattern being the result of the waves in one branch being phase-shifted relative to the waves in the other branch.
    Type: Application
    Filed: November 14, 2012
    Publication date: May 15, 2014
    Applicant: HEADWAY TECHNOLOGIES, INC.
    Inventors: Tobias Maletzky, Xuhui Jin, Yiming Wang, Dayu Zhou, Joe Smyth, Moris Dovek
  • Publication number: 20140123473
    Abstract: A method of forming a TAMR (Thermal Assisted Magnetic Recording) write head that uses the energy of optical-laser excited plasmons to locally heat a magnetic recording medium and reduce its coercivity and magnetic anisotropy. The magnetic field of the write head is enhanced by the formation of a leading shield that is formed in a concave geometrical shape and partially surrounds the waveguide portion of the head within the concavity, which allows the distal end of the waveguide to extend to the ABS plane of the write head. This arrangement reduces the gap between the shield and the magnetic pole and does not interfere with the ability of the waveguide to efficiently transfer its optical energy to the plasmon generator and, ultimately, to the surface of the magnetic recording medium.
    Type: Application
    Filed: December 23, 2013
    Publication date: May 8, 2014
    Applicant: Headway Technologies, Inc.
    Inventors: Yiming Wang, Tobias Maletzky, Xuhui Jin, Dayu Zhou, Joe Smyth, Moris Dovek
  • Publication number: 20140112115
    Abstract: Three structures, and processes for manufacturing them, that improve the performance of a TAMR feature in a magnetic write head are disclosed. This improvement is achieved by making the separation between the edge plasmon generator and the plasmon shield less than the separation between the edge plasmon generator and the optical wave-guide.
    Type: Application
    Filed: October 18, 2012
    Publication date: April 24, 2014
    Applicant: HEADWAY TECHNOLOGIES, INC.
    Inventors: Xuhui Jin, Hiroyuki Ito, Shigeki Tanemura, Dayu Zhou
  • Patent number: 8630153
    Abstract: A TAMR (Thermal Assisted Magnetic Recording) write head uses the energy of optical-laser excited plasmons to locally heat a magnetic recording medium and reduce its coercivity and magnetic anisotropy. The magnetic field of the write head is enhanced by the formation of a leading shield that is formed in a concave geometrical shape and partially surrounds the waveguide portion of the head within the concavity, which allows the distal end of the waveguide to extend to the ABS plane of the write head. This arrangement reduces the gap between the shield and the magnetic pole and does not interfere with the ability of the waveguide to efficiently transfer its optical energy to the plasmon generator and, ultimately, to the surface of the magnetic recording medium.
    Type: Grant
    Filed: November 5, 2012
    Date of Patent: January 14, 2014
    Assignee: Headway Technologies, Inc.
    Inventors: Yiming Wang, Tobias Maletzky, Xuhui Jin, Dayu Zhou, Joe Smyth, Moris Dovek
  • Patent number: 8599656
    Abstract: A TAMR (Thermal Assisted Magnetic Recording) write head uses the energy of optical-laser excited surface plasmons in a scalable planar plasmon generator to locally heat a magnetic recording medium and reduce its coercivity and magnetic anisotropy. The planar plasmon generator is formed as a multi-layered structure in which one planar layer supports a propagating surface plasmon mode that is excited by evanescent coupling to an optical mode in an adjacent waveguide. A peg, which can be a free-standing element or an integral projection from one of the layers, is positioned between the ABS end of the generator and the surface of the recording medium, confines and concentrates the near field of the plasmon mode immediately around and beneath it.
    Type: Grant
    Filed: December 12, 2011
    Date of Patent: December 3, 2013
    Assignee: Headway Technologies, Inc.
    Inventors: Xuhui Jin, Tobias Maletzky, Suping Song, Dayu Zhou, Joe Smyth, Moris Dovek
  • Publication number: 20130148485
    Abstract: A TAMR (Thermal Assisted Magnetic Recording) write head uses the energy of optical-laser excited surface plasmons in a scalable planar plasmon generator to locally heat a magnetic recording medium and reduce its coercivity and magnetic anisotropy. The planar plasmon generator is formed as a multi-layered structure in which one planar layer supports a propagating surface plasmon mode that is excited by evanescent coupling to an optical mode in an adjacent waveguide. A peg, which can be a free-standing element or an integral projection from one of the layers, is positioned between the ABS end of the generator and the surface of the recording medium, confines and concentrates the near field of the plasmon mode immediately around and beneath it.
    Type: Application
    Filed: December 12, 2011
    Publication date: June 13, 2013
    Applicant: Headway Technologies, Inc.
    Inventors: Xuhui Jin, Tobias Maletzky, Suping Song, Dayu Zhou, Joe Smyth, Moris Dovek
  • Patent number: 8248898
    Abstract: A waveguide structure for aligning a light source to a center waveguide (CWG) in a TAMR head is disclosed and includes two alignment waveguides (AWVG) symmetrically formed about a plane that bisects the CWG lengthwise dimension. Each AWVG has a light coupling section formed parallel to a side of the CWG and captures 0.5% to 10% of the light in the CWG. Each AWVG has an outlet that directs light to a photo detector or camera so that light intensity measurements lAWVG1 and lAWVG2 for first and second AWVG, respectively, can be taken at various positions of the light source. Optimum alignment occurs when (lAWVG1+lAWVG2) reaches a maximum value and |lAWVG1?lAWVG2| has a minimum value. AWVG outlets may be at the ABS, or at the side or back end of a slider. Measurement sensitivity is increased by decreasing the width of the AWVG.
    Type: Grant
    Filed: October 18, 2010
    Date of Patent: August 21, 2012
    Assignee: Headway Technologies, Inc.
    Inventors: Erhard Schreck, Xuhui Jin, Tobias Maletzky, Joe Smyth, Dayu Zhou, Yuchen Zhou, Kenichi Takano
  • Publication number: 20120092971
    Abstract: A waveguide structure for aligning a light source to a center waveguide (CWG) in a TAMR head is disclosed and includes two alignment waveguides (AWVG) symmetrically formed about a plane that bisects the CWG lengthwise dimension. Each AWVG has a light coupling section formed parallel to a side of the CWG and captures 0.5% to 10% of the light in the CWG. Each AWVG has an outlet that directs light to a photo detector or camera so that light intensity measurements lAWVG1 and lAWVG2 for first and second AWVG, respectively, can be taken at various positions of the light source. Optimum alignment occurs when (lAWVG1+lAWVG2) reaches a maximum value and |lAWVG1?lAWVG2| has a minimum value. AWVG outlets may be at the ABS, or at the side or back end of a slider. Measurement sensitivity is increased by decreasing the width of the AWVG.
    Type: Application
    Filed: October 18, 2010
    Publication date: April 19, 2012
    Inventors: Erhard Schreck, Xuhui Jin, Tobias Maletzky, Joe Smyth, Dayu Zhou, Yuchen Zhou, Kenichi Takano