Patents by Inventor Dazhou GUO

Dazhou GUO has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11701066
    Abstract: A method for performing a computer-aided diagnosis (CAD) includes: acquiring a medical image set; generating a three-dimensional (3D) tumor distance map corresponding to the medical image set, each voxel of the tumor distance map representing a distance from the voxel to a nearest boundary of a primary tumor present in the medical image set; and performing neural-network processing of the medical image set to generate a predicted probability map to predict presence and locations of oncology significant lymph nodes (OSLNs) in the medical image set, wherein voxels in the medical image set are stratified and processed according to the tumor distance map.
    Type: Grant
    Filed: November 11, 2020
    Date of Patent: July 18, 2023
    Assignee: PING AN TECHNOLOGY (SHENZHEN) CO., LTD.
    Inventors: Ke P Yan, Zhuotun Zhu, Dakai Jin, Jinzheng Cai, Adam P Harrison, Dazhou Guo, Le Lu
  • Publication number: 20230177847
    Abstract: A system and method for large-scale lane marking detection using multimodal sensor data are disclosed. A particular embodiment includes: receiving image data from an image generating device mounted on a vehicle; receiving point cloud data from a distance and intensity measuring device mounted on the vehicle; fusing the image data and the point cloud data to produce a set of lane marking points in three-dimensional (3D) space that correlate to the image data and the point cloud data; and generating a lane marking map from the set of lane marking points.
    Type: Application
    Filed: January 27, 2023
    Publication date: June 8, 2023
    Inventors: Xue MEI, Xiaodi HOU, Dazhou GUO, Yujie WEI
  • Patent number: 11580754
    Abstract: A system and method for large-scale lane marking detection using multimodal sensor data are disclosed. A particular embodiment includes: receiving image data from an image generating device mounted on a vehicle; receiving point cloud data from a distance and intensity measuring device mounted on the vehicle; fusing the image data and the point cloud data to produce a set of lane marking points in three-dimensional (3D) space that correlate to the image data and the point cloud data; and generating a lane marking map from the set of lane marking points.
    Type: Grant
    Filed: April 10, 2020
    Date of Patent: February 14, 2023
    Assignee: TUSIMPLE, INC.
    Inventors: Xue Mei, Xiaodi Hou, Dazhou Guo, Yujie Wei
  • Patent number: 11315254
    Abstract: A method and device for stratified image segmentation are provided. The method includes: obtaining a three-dimensional (3D) image data set representative of a region comprising at least three levels of objects; generating a first segmentation result indicating boundaries of anchor-level objects in the region based on a first neural network (NN) model corresponding to the anchor-level objects; generating a second segmentation result indicating boundaries of mid-level objects in the region based on the first segmentation result and a second NN model corresponding to the mid-level objects; and generating a third segmentation result indicating small-level objects in the region based on the first segmentation result, a third NN model corresponding to the small-level objects, and cropped regions corresponding to the small-level objects.
    Type: Grant
    Filed: July 14, 2020
    Date of Patent: April 26, 2022
    Assignee: Ping An Technology (Shenzhen) Co., Ltd.
    Inventors: Dazhou Guo, Dakai Jin, Zhuotun Zhu, Adam P Harrison, Le Lu
  • Publication number: 20210233240
    Abstract: A method for performing a computer-aided diagnosis (CAD) includes: acquiring a medical image set; generating a three-dimensional (3D) tumor distance map corresponding to the medical image set, each voxel of the tumor distance map representing a distance from the voxel to a nearest boundary of a primary tumor present in the medical image set; and performing neural-network processing of the medical image set to generate a predicted probability map to predict presence and locations of oncology significant lymph nodes (OSLNs) in the medical image set, wherein voxels in the medical image set are stratified and processed according to the tumor distance map.
    Type: Application
    Filed: November 11, 2020
    Publication date: July 29, 2021
    Inventors: Ke P. YAN, Zhuotun ZHU, Dakai JIN, Jinzheng CAI, Adam P. HARRISON, Dazhou GUO, Le LU
  • Publication number: 20210225000
    Abstract: A method and device for stratified image segmentation are provided. The method includes: obtaining a three-dimensional (3D) image data set representative of a region comprising at least three levels of objects; generating a first segmentation result indicating boundaries of anchor-level objects in the region based on a first neural network (NN) model corresponding to the anchor-level objects; generating a second segmentation result indicating boundaries of mid-level objects in the region based on the first segmentation result and a second NN model corresponding to the mid-level objects; and generating a third segmentation result indicating small-level objects in the region based on the first segmentation result, a third NN model corresponding to the small-level objects, and cropped regions corresponding to the small-level objects.
    Type: Application
    Filed: July 14, 2020
    Publication date: July 22, 2021
    Inventors: Dazhou GUO, Dakai JIN, Zhuotun ZHU, Adam P Harrison, Le LU
  • Patent number: 11040219
    Abstract: The present disclosure provides a clinical target volume delineation method and an electronic device. The method includes: receiving a radiotherapy computed tomography (RTCT) image; and obtaining a plurality of binary images by delineating a gross tumor volume (GTV), lymph nodes (LNs), and organs at risk (OARs) in the RTCT image. A SDMs for each of the binary images is calculated. The RTCT image and all the SDM are finally input into a clinical target volume (CTV) delineation model; and a CTV in the RTCT image is delineated by the CTV delineation model. An automatic delineation of the CTV of esophageal cancer are realized, a delineation efficiency is high and a delineation effect is good.
    Type: Grant
    Filed: August 21, 2019
    Date of Patent: June 22, 2021
    Assignee: Ping An Technology (Shenzhen) Co., Ltd.
    Inventors: Dakai Jin, Dazhou Guo, Le Lu, Adam Patrick Harrison
  • Publication number: 20210056706
    Abstract: In a GTV segmentation method, a PET-CT image pair and an RTCT image of a human body are obtained. A PET image in the PET-CT image pair is aligned to the RTCT image to obtain an aligned PET image. A first PSNN performs a first GTV segmentation on the RTCT image to obtain a first segmentation image. The RTCT image and the aligned PET image are concatenated into a first concatenated image. A second PSNN performs a second GTV segmentation on the first concatenated image to obtain a second segmentation image. The RTCT image, the first segmentation image, and the second segmentation image are concatenated into a second concatenated image. A third PSNN performs a third GTV segmentation on the second concatenated image to obtain an object segmentation image.
    Type: Application
    Filed: August 21, 2019
    Publication date: February 25, 2021
    Inventors: Dakai Jin, Dazhou Guo, Le Lu, Adam Patrick Harrison
  • Publication number: 20210052918
    Abstract: The present disclosure provides a clinical target volume delineation method and an electronic device. The method includes: receiving a radiotherapy computed tomography (RTCT) image; and obtaining a plurality of binary images by delineating a gross tumor volume (GTV), lymph nodes (LNs), and organs at risk (OARs) in the RTCT image. A SDMs for each of the binary images is calculated. The RTCT image and all the SDM are finally input into a clinical target volume (CTV) delineation model; and a CTV in the RTCT image is delineated by the CTV delineation model. An automatic delineation of the CTV of esophageal cancer are realized, a delineation efficiency is high and a delineation effect is good.
    Type: Application
    Filed: August 21, 2019
    Publication date: February 25, 2021
    Inventors: Dakai Jin, Dazhou Guo, Le Lu, Adam Patrick Harrison
  • Patent number: 10929981
    Abstract: In a GTV segmentation method, a PET-CT image pair and an RTCT image of a human body are obtained. A PET image in the PET-CT image pair is aligned to the RTCT image to obtain an aligned PET image. A first PSNN performs a first GTV segmentation on the RTCT image to obtain a first segmentation image. The RTCT image and the aligned PET image are concatenated into a first concatenated image. A second PSNN performs a second GTV segmentation on the first concatenated image to obtain a second segmentation image. The RTCT image, the first segmentation image, and the second segmentation image are concatenated into a second concatenated image. A third PSNN performs a third GTV segmentation on the second concatenated image to obtain an object segmentation image.
    Type: Grant
    Filed: August 21, 2019
    Date of Patent: February 23, 2021
    Assignee: Ping An Technology (Shenzhen) Co., Ltd.
    Inventors: Dakai Jin, Dazhou Guo, Le Lu, Adam Patrick Harrison
  • Publication number: 20200242373
    Abstract: A system and method for large-scale lane marking detection using multimodal sensor data are disclosed. A particular embodiment includes: receiving image data from an image generating device mounted on a vehicle; receiving point cloud data from a distance and intensity measuring device mounted on the vehicle; fusing the image data and the point cloud data to produce a set of lane marking points in three-dimensional (3D) space that correlate to the image data and the point cloud data; and generating a lane marking map from the set of lane marking points.
    Type: Application
    Filed: April 10, 2020
    Publication date: July 30, 2020
    Inventors: Xue Mei, Xiaodi HOU, Dazhou GUO, Yujie WE
  • Patent number: 10657390
    Abstract: A system and method for large-scale lane marking detection using multimodal sensor data are disclosed. A particular embodiment includes: receiving image data from an image generating device mounted on a vehicle; receiving point cloud data from a distance and intensity measuring device mounted on the vehicle; fusing the image data and the point cloud data to produce a set of lane marking points in three-dimensional (3D) space that correlate to the image data and the point cloud data; and generating a lane marking map from the set of lane marking points.
    Type: Grant
    Filed: November 27, 2017
    Date of Patent: May 19, 2020
    Assignee: TUSIMPLE, INC.
    Inventors: Xue Mei, Xiaodi Hou, Dazhou Guo, Yujie Wei
  • Patent number: 10528823
    Abstract: A system and method for large-scale lane marking detection using multimodal sensor data are disclosed. A particular embodiment includes: receiving image data from an image generating device mounted on a vehicle; receiving point cloud data from a distance and intensity measuring device mounted on the vehicle; fusing the image data and the point cloud data to produce a set of lane marking points in three-dimensional (3D) space that correlate to the image data and the point cloud data; and generating a lane marking map from the set of lane marking points.
    Type: Grant
    Filed: November 27, 2017
    Date of Patent: January 7, 2020
    Assignee: TUSIMPLE
    Inventors: Dazhou Guo, Yujie Wei, Xue Mei, Xiaodi Hou
  • Publication number: 20190163989
    Abstract: A system and method for large-scale lane marking detection using multimodal sensor data are disclosed. A particular embodiment includes: receiving image data from an image generating device mounted on a vehicle; receiving point cloud data from a distance and intensity measuring device mounted on the vehicle; fusing the image data and the point cloud data to produce a set of lane marking points in three-dimensional (3D) space that correlate to the image data and the point cloud data; and generating a lane marking map from the set of lane marking points.
    Type: Application
    Filed: November 27, 2017
    Publication date: May 30, 2019
    Inventors: Dazhou GUO, Yujie WEI, Xue MEI, Xiaodi HOU
  • Publication number: 20190163990
    Abstract: A system and method for large-scale lane marking detection using multimodal sensor data are disclosed. A particular embodiment includes: receiving image data from an image generating device mounted on a vehicle; receiving point cloud data from a distance and intensity measuring device mounted on the vehicle; fusing the image data and the point cloud data to produce a set of lane marking points in three-dimensional (3D) space that correlate to the image data and the point cloud data; and generating a lane marking map from the set of lane marking points.
    Type: Application
    Filed: November 27, 2017
    Publication date: May 30, 2019
    Inventors: Xue MEI, Xiaodi HOU, Dazhou GUO, Yujie WEI