Patents by Inventor De-chu C. Tang

De-chu C. Tang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190134178
    Abstract: The present invention shows that intranasal administration of E1/E3-defective adenovirus particles may confer rapid and broad protection against viral and bacterial pathogens in a variety of disease settings. Protective responses lasted for many weeks in a single-dose regimen in animal models. When a pathogen-derived antigen gene was inserted into the E1/E3-defective adenovirus genome, the antigen-induced protective immunity against the specific pathogen was elicited before the adenovirus-mediated protective response declined away, thus conferring rapid, prolonged, and seamless protection against pathogens. In addition to E1/E3-defective adenovirus, other bioengineered non-replicating vectors encoding pathogen-derived antigens may also be developed into a new generation of rapid and prolonged immunologic-therapeutic (RAPIT).
    Type: Application
    Filed: November 30, 2018
    Publication date: May 9, 2019
    Applicant: Altimmune Inc.
    Inventor: De-chu C. TANG
  • Patent number: 10183069
    Abstract: The present invention shows that intranasal administration of E1/E3-defective adenovirus particles may confer rapid and broad protection against viral and bacterial pathogens in a variety of disease settings. Protective responses lasted for many weeks in a single-dose regimen in animal models. When a pathogen-derived antigen gene was inserted into the E1/E3-defective adenovirus genome, the antigen-induced protective immunity against the specific pathogen was elicited before the adenovirus-mediated protective response declined away, thus conferring rapid, prolonged, and seamless protection against pathogens. In addition to E1/E3-defective adenovirus, other bioengineered non-replicating vectors encoding pathogen-derived antigens may also be developed into a new generation of rapid and prolonged immunologic-therapeutic (RAPIT).
    Type: Grant
    Filed: September 23, 2015
    Date of Patent: January 22, 2019
    Assignee: Altimmune Inc.
    Inventor: De-Chu C. Tang
  • Publication number: 20180133306
    Abstract: The present invention relates generally to the fields of immunology and vaccine technology. More specifically, the invention relates to recombinant human adenovirus vectors for delivery of avian immunogens and antigens, such as avian influenza into avians. The invention also provides methods of introducing and expressing an avian immunogen in avian subjects, including avian embryos, as well as methods of eliciting an immunogenic response in avian subjects to avian immunogens.
    Type: Application
    Filed: November 28, 2017
    Publication date: May 17, 2018
    Inventors: De-Chu C. Tang, Kent R. Van Kampen, Haroldo Toro
  • Patent number: 9855328
    Abstract: The present invention relates generally to the fields of immunology and vaccine technology. More specifically, the invention relates to recombinant human adenovirus vectors for delivery of avian immunogens and antigens, such as avian influenza into avians. The invention also provides methods of introducing and expressing an avian immunogen in avian subjects, including avian embryos, as well as methods of eliciting an immunogenic response in avian subjects to avian immunogens.
    Type: Grant
    Filed: September 6, 2013
    Date of Patent: January 2, 2018
    Assignees: AUBURN UNIVERSITY, ALTIMMUNE INC.
    Inventors: De-Chu C. Tang, Kent R. Van Kampen, Haroldo Toro
  • Patent number: 9605275
    Abstract: The present invention shows that intranasal administration of E1/E3-defective adenovirus particles may confer rapid and broad protection against viral and bacterial pathogens in a variety of disease settings. Protective responses lasted for many weeks in a single-dose regimen in animal models. When a pathogen-derived antigen gene was inserted into the E1/E3-defective adenovirus genome, the antigen-induced protective immunity against the specific pathogen was elicited before the adenovirus-mediated protective response declined away, thus conferring rapid, prolonged, and seamless protection against pathogens. In addition to E1/E3-defective adenovirus, other bioengineered non-replicating vectors encoding pathogen-derived antigens may also be developed into a new generation of rapid and prolonged immunologic-therapeutic (RAPIT).
    Type: Grant
    Filed: December 30, 2013
    Date of Patent: March 28, 2017
    Assignee: ALTIMMUNE INC.
    Inventor: De-Chu C. Tang
  • Publication number: 20160175428
    Abstract: Disclosed and claimed is a method of non-invasive immunization in an animal and/or a method of inducing a systemic immune response or systemic therapeutic response to a gene product. The skin of the animal is contacted with a non-replicative vector chosen from the group of bacterium, virus, and fungus, wherein the vector comprises and expresses a nucleic acid molecule encoding the gene product, in an amount effective to induce the response.
    Type: Application
    Filed: December 28, 2015
    Publication date: June 23, 2016
    Inventors: De-Chu C. Tang, Zhongkai Shi, Kent Rigby van Kampen
  • Patent number: 9248177
    Abstract: Disclosed and claimed is a method of non-invasive immunization in an animal and/or a method of inducing a systemic immune response or systemic therapeutic response to a gene product. The skin of the animal is contacted with a non-replicative vector chosen from the group of bacterium, virus, and fungus, wherein the vector comprises and expresses a nucleic acid molecule encoding the gene product, in an amount effective to induce the response.
    Type: Grant
    Filed: August 7, 2013
    Date of Patent: February 2, 2016
    Assignee: UAB Research Foundation
    Inventors: De-Chu C. Tang, Zhongkai Shi, Kent Rigby van Kampen
  • Publication number: 20160022797
    Abstract: The present invention shows that intranasal administration of E1/E3-defective adenovirus particles may confer rapid and broad protection against viral and bacterial pathogens in a variety of disease settings. Protective responses lasted for many weeks in a single-dose regimen in animal models. When a pathogen-derived antigen gene was inserted into the E1/E3-defective adenovirus genome, the antigen-induced protective immunity against the specific pathogen was elicited before the adenovirus-mediated protective response declined away, thus conferring rapid, prolonged, and seamless protection against pathogens. In addition to E1/E3-defective adenovirus, other bioengineered non-replicating vectors encoding pathogen-derived antigens may also be developed into a new generation of rapid and prolonged immunologic-therapeutic (RAPIT).
    Type: Application
    Filed: September 23, 2015
    Publication date: January 28, 2016
    Inventor: De-Chu C. TANG
  • Patent number: 9175310
    Abstract: The present invention shows that intranasal administration of E1/E3-defective adenovirus particles may confer rapid and broad protection against viral and bacterial pathogens in a variety of disease settings. Protective responses lasted for many weeks in a single-dose regimen in animal models. When a pathogen-derived antigen gene was inserted into the E1/E3-defective adenovirus genome, the antigen-induced protective immunity against the specific pathogen was elicited before the adenovirus-mediated protective response declined away, thus conferring rapid, prolonged, and seamless protection against pathogens. In addition to E1/E3-defective adenovirus, other bioengineered non-replicating vectors encoding pathogen-derived antigens may also be developed into a new generation of rapid and prolonged immunologic-therapeutic (RAPIT).
    Type: Grant
    Filed: March 21, 2012
    Date of Patent: November 3, 2015
    Assignee: ALTIMMUNE INC
    Inventor: De-Chu C. Tang
  • Publication number: 20140141041
    Abstract: The present invention shows that intranasal administration of E1/E3-defective adenovirus particles may confer rapid and broad protection against viral and bacterial pathogens in a variety of disease settings. Protective responses lasted for many weeks in a single-dose regimen in animal models. When a pathogen-derived antigen gene was inserted into the E1/E3-defective adenovirus genome, the antigen-induced protective immunity against the specific pathogen was elicited before the adenovirus-mediated protective response declined away, thus conferring rapid, prolonged, and seamless protection against pathogens. In addition to E1/E3-defective adenovirus, other bioengineered non-replicating vectors encoding pathogen-derived antigens may also be developed into a new generation of rapid and prolonged immunologic-therapeutic (RAPIT).
    Type: Application
    Filed: December 30, 2013
    Publication date: May 22, 2014
    Applicant: VAXIN INC.
    Inventor: De-Chu C. Tang
  • Publication number: 20140112951
    Abstract: Disclosed and claimed is a method of non-invasive immunization in an animal and/or a method of inducing a systemic immune response or systemic therapeutic response to a gene product. The skin of the animal is contacted with a non-replicative vector chosen from the group of bacterium, virus, and fungus, wherein the vector comprises and expresses a nucleic acid molecule encoding the gene product, in an amount effective to induce the response.
    Type: Application
    Filed: August 7, 2013
    Publication date: April 24, 2014
    Applicant: UAB RESEARCH FOUNDATION
    Inventors: De-Chu C. Tang, Zhongkai Shi, Kent Rigby van Kampen
  • Publication number: 20140037679
    Abstract: The present invention relates generally to the fields of immunology and vaccine technology. More specifically, the invention relates to recombinant human adenovirus vectors for delivery of avian immunogens and antigens, such as avian influenza into avians. The invention also provides methods of introducing and expressing an avian immunogen in avian subjects, including avian embryos, as well as methods of eliciting an immunogenic response in avian subjects to avian immunogens.
    Type: Application
    Filed: September 6, 2013
    Publication date: February 6, 2014
    Inventors: De-Chu C. Tang, Kent R. Van Kampen, Harold Toro
  • Publication number: 20120276138
    Abstract: The present invention shows that intranasal administration of E1/E3-defective adenovirus particles may confer rapid and broad protection against viral and bacterial pathogens in a variety of disease settings. Protective responses lasted for many weeks in a single-dose regimen in animal models. When a pathogen-derived antigen gene was inserted into the E1/E3-defective adenovirus genome, the antigen-induced protective immunity against the specific pathogen was elicited before the adenovirus-mediated protective response declined away, thus conferring rapid, prolonged, and seamless protection against pathogens. In addition to E1/E3-defective adenovirus, other bioengineered non-replicating vectors encoding pathogen-derived antigens may also be developed into a new generation of rapid and prolonged immunologic-therapeutic (RAPIT).
    Type: Application
    Filed: March 21, 2012
    Publication date: November 1, 2012
    Inventor: De-Chu C. Tang
  • Publication number: 20110268762
    Abstract: The present invention relates generally to the fields of immunology and vaccine technology. More specifically, the invention relates to mucosal administration via aerosol spray to avians of immunogenic and vaccine compositions, including those comprising recombinant human adenovirus vectors for delivery of genes encoding avian immunogens or antigens, such as genes encoding avian influenza virus. The invention also provides methods and apparatus for use in such administration.
    Type: Application
    Filed: March 25, 2011
    Publication date: November 3, 2011
    Inventors: Haroldo Toro, De-Chu C. Tang, Kent R. Van Kampen
  • Publication number: 20090175897
    Abstract: The present invention relates generally to the fields of gene therapy, immunology, and vaccine technology. More specifically, the invention relates to a novel system that can rapidly generate high titers of adenovirus vectors that are free of replication-competent adenovirus (RCA). Also provided are methods of generating these RCA-free adenoviral vectors, immunogenic or vaccine compositions comprising these RCA-free adenovirus vectors, methods of expressing a heterologous nucleic acid of interest in these adenovirus vectors and methods of eliciting immunogenic responses using these adenovirus vectors.
    Type: Application
    Filed: November 21, 2007
    Publication date: July 9, 2009
    Inventors: De-chu C. Tang, Jianfeng Zhang, Kent R. Van Kampen
  • Patent number: 7524510
    Abstract: Described herein are methods for the noninvasive immunization of a subject that involve alkyl glycosides. Also described herein are compositions, kits, and devices for the noninvasive immunization of a subject.
    Type: Grant
    Filed: February 23, 2006
    Date of Patent: April 28, 2009
    Assignee: The UAB Research Foundation
    Inventors: John Jefferson Arnold, Chun-Ming Huang, Elias Meezan, Dennis J. Pillion, De-Chu C. Tang
  • Patent number: 6716823
    Abstract: Disclosed and claimed are methods of non-invasive genetic immunization in an animal and/or methods of inducing a systemic immune or therapeutic response in an animal, products therefrom and uses for the methods and products therefrom. The methods can include contacting skin of the animal with a vector in an amount effective to induce the systemic immune or therapeutic response in the animal. The vector can include and express an exogenous nucleic acid molecule encoding an epitope or gene product of interest. The systemic immune response can be to or from the epitope or gene product. The nucleic acid molecule can encode an epitope of interest and/or an antigen of interest and/or a nucleic acid molecule that stimulates and/or modulates an immunological response and/or stimulates and/or modulates expression, e.g., transcription and/or translation, such as transcription and/or translation of an endogenous and/or exogenous nucleic acid molecule; e.g.
    Type: Grant
    Filed: March 23, 2000
    Date of Patent: April 6, 2004
    Assignee: The UAB Research Foundation
    Inventors: De-chu C. Tang, Donald H. Marks, David T. Curiel, Zhongkai Shi
  • Publication number: 20040009936
    Abstract: Disclosed and claimed are methods of non-invasive immunization and drug delivery in an animal and/or methods of inducing a systemic immune or therapeutic response in an animal following topical application of non-replicative vectors, products therefrom and uses for the methods and products therefrom. Also disclosed and claimed are methods of non-invasive immunization and drug delivery in an animal and/or a method of inducing a systemic immune response or systemic therapeutic response to a gene product comprising contacting skin of the animal with cell-free extracts in an amount effective to induce the response, wherein the extracts are prepared by filtration of disrupted cells, wherein the cell comprises and expresses a nucleic acid molecule. Preferably, the cell is temporarily disrupted by sonication, remaining intact and viable after the sonication.
    Type: Application
    Filed: January 16, 2003
    Publication date: January 15, 2004
    Inventors: De-chu C. Tang, Zhongkai Shi, Kent Rigby van Kampen
  • Publication number: 20030125278
    Abstract: The present invention relates to techniques of skin-targeted non-invasive gene delivery to elicit immune responses and uses thereof. The invention further relates to methods of non-invasive genetic immunization in an animal and/or methods of inducing a systemic immune or therapeutic response in an animal following topical application of vectors, products therefrom and uses for the methods and products therefrom. The methods can include contacting skin of the animal with a vector in an amount effective to induce the systemic immune or therapeutic response in the animal as well as such a method further including disposing the vector in and/or on the delivery device. The vector can be gram negative bacteria, preferably Salmonella and most preferably Salmonella typhimurium.
    Type: Application
    Filed: January 18, 2002
    Publication date: July 3, 2003
    Inventors: De-Chu C. Tang, Donald H. Marks, David T. Curiel, Zhongkai Shi, Kent Rigby van Kampen
  • Publication number: 20030045492
    Abstract: The present invention relates to techniques of skin-targeted non-invasive gene delivery to elicit immune responses and uses thereof. The invention further relates to methods of non-invasive genetic immunization in an animal and/or methods of inducing a systemic immune or therapeutic response in an animal following topical application of vectors, products therefrom and uses for the methods and products therefrom. The methods can include contacting skin of the animal with a vector in an amount effective to induce the systemic immune or therapeutic response in the animal as well as such a method further including disposing the vector in and/or on the delivery device. The vector can be gram negative bacteria, preferably Salmonella and most preferably Salmonella typhimurium.
    Type: Application
    Filed: April 5, 2002
    Publication date: March 6, 2003
    Inventors: De-Chu C. Tang, Zhongkai Shi, Kent Rigby van Kampen