Patents by Inventor De-Yi Chiou

De-Yi Chiou has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11916022
    Abstract: Various embodiments of the present disclosure are directed towards a semiconductor processing system including an overlay (OVL) shift measurement device. The OVL shift measurement device is configured to determine an OVL shift between a first wafer and a second wafer, where the second wafer overlies the first wafer. A photolithography device is configured to perform one or more photolithography processes on the second wafer. A controller is configured to perform an alignment process on the photolithography device according to the determined OVL shift. The photolithography device performs the one or more photolithography processes based on the OVL shift.
    Type: Grant
    Filed: June 7, 2022
    Date of Patent: February 27, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yeong-Jyh Lin, Ching I Li, De-Yang Chiou, Sz-Fan Chen, Han-Jui Hu, Ching-Hung Wang, Ru-Liang Lee, Chung-Yi Yu
  • Patent number: 11730548
    Abstract: An OCT scanning probe includes a tubular housing, at least one electrode, an optical fiber scanner and an auxiliary localization component. The electrode is disposed on an outer surface of the tubular housing. The optical fiber scanner is disposed in the tubular housing and includes an optical fiber and an optical element. The optical element is disposed on an emitting end of the optical fiber and at corresponding position to a light transmittable portion of the tubular housing. The auxiliary localization component is disposed on the tubular housing, and overlaps part of the light transmittable portion. A light beam emitted from the optical fiber scanner passes through the light transmittable portion to obtain a tomographic image. An interaction of the light beam with the auxiliary localization component causes a characteristic in the tomographic image, with the characteristic corresponding to the auxiliary localization component.
    Type: Grant
    Filed: December 17, 2020
    Date of Patent: August 22, 2023
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: De Yi Chiou, Kai-Hsiang Chen, Chi Shen Chang
  • Publication number: 20220192750
    Abstract: An OCT scanning probe includes a tubular housing, at least one electrode, an optical fiber scanner and an auxiliary localization component. The electrode is disposed on an outer surface of the tubular housing. The optical fiber scanner is disposed in the tubular housing and includes an optical fiber and an optical element. The optical element is disposed on an emitting end of the optical fiber and at corresponding position to a light transmittable portion of the tubular housing. The auxiliary localization component is disposed on the tubular housing, and overlaps part of the light transmittable portion. A light beam emitted from the optical fiber scanner passes through the light transmittable portion to obtain a tomographic image. An interaction of the light beam with the auxiliary localization component causes a characteristic in the tomographic image, with the characteristic corresponding to the auxiliary localization component.
    Type: Application
    Filed: December 17, 2020
    Publication date: June 23, 2022
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: De Yi CHIOU, Kai-Hsiang CHEN, Chi Shen CHANG
  • Patent number: 10973579
    Abstract: An optical system adapted to detect an object including a beam splitting and combing element, a catheter, a focusing element, a deformation detecting module, and an object detecting module is provided. The catheter sleeves outside an optical fiber, and the optical fiber has at least one fiber Bragg gratings. The deformation detecting module and the object detecting module are coupled to the beam splitting and combing element. A first light is reflected by the at least one fiber Bragg gratings and then transmitted to the deformation detecting module. A second light is transmitted to and reflected by the object, so as to be transmitted to the object detecting module. A first wavelength range of the first light is different from a second wavelength range of the second light.
    Type: Grant
    Filed: December 28, 2018
    Date of Patent: April 13, 2021
    Assignee: Industrial Technology Research Institute
    Inventors: Yi-Cheng Liu, Yuan-Chin Lee, De-Yi Chiou, Hung-Chih Chiang
  • Publication number: 20200205897
    Abstract: An optical system adapted to detect an object including a beam splitting and combing element, a catheter, a focusing element, a deformation detecting module, and an object detecting module is provided. The catheter sleeves outside an optical fiber, and the optical fiber has at least one fiber Bragg gratings. The deformation detecting module and the object detecting module are coupled to the beam splitting and combing element. A first light is reflected by the at least one fiber Bragg gratings and then transmitted to the deformation detecting module. A second light is transmitted to and reflected by the object, so as to be transmitted to the object detecting module. A first wavelength range of the first light is different from a second wavelength range of the second light.
    Type: Application
    Filed: December 28, 2018
    Publication date: July 2, 2020
    Applicant: Industrial Technology Research Institute
    Inventors: Yi-Cheng Liu, Yuan-Chin Lee, De-Yi Chiou, Hung-Chih Chiang
  • Patent number: 10123701
    Abstract: An intraocular pressure detecting device includes a pressure generation unit, a light source, an image sensing unit and a processing unit. The pressure generation unit applies pressure to a target surface of an eyeball along a first operation axis direction, such that a deformation is generated on the target surface. The light source emits light that irradiates the target surface along a second operation axis direction, so as to generate a speckle pattern on the target surface. The image sensing unit observes and records an image variation of the speckle pattern along a third operation axis direction. The processing unit is signally connected with the image sensing unit to receive an image of the speckle pattern. The processing unit identifies and analyzes a feature size of the image of the speckle pattern for obtaining an intraocular pressure value of the eyeball. An intraocular pressure detecting method is also described.
    Type: Grant
    Filed: December 28, 2015
    Date of Patent: November 13, 2018
    Assignee: Industrial Technology Research Institute
    Inventors: Yio-Wha Shau, De-Yi Chiou, Wan-Ting Tien, Tian-Yuan Chen, Chun-Chuan Lin, Shih-Bin Luo
  • Publication number: 20170181626
    Abstract: An intraocular pressure detecting device includes a pressure generation unit, a light source, an image sensing unit and a processing unit. The pressure generation unit applies pressure to a target surface of an eyeball along a first operation axis direction, such that a deformation is generated on the target surface. The light source emits light that irradiates the target surface along a second operation axis direction, so as to generate a speckle pattern on the target surface. The image sensing unit observes and records an image variation of the speckle pattern along a third operation axis direction. The processing unit is signally connected with the image sensing unit to receive an image of the speckle pattern. The processing unit identifies and analyzes a feature size of the image of the speckle pattern for obtaining an intraocular pressure value of the eyeball. An intraocular pressure detecting method is also described.
    Type: Application
    Filed: December 28, 2015
    Publication date: June 29, 2017
    Inventors: Yio-Wha Shau, De-Yi Chiou, Wan-Ting Tien, Tian-Yuan Chen, Chun-Chuan Lin, Shih-Bin Luo
  • Publication number: 20140100437
    Abstract: This disclosure provides a photoacoustic imaging method for calcifications or microcalcifications. This photoacoustic imaging method is able to determine benign or malignant calcifications in a non-invasive way.
    Type: Application
    Filed: July 17, 2013
    Publication date: April 10, 2014
    Inventors: Shih-Bin Luo, De-Yi Chiou, Wan-Ting Tien, Meng-Lin Li, Shin-Cheh Chen
  • Publication number: 20130144149
    Abstract: A photoacoustic imaging apparatus for detecting a photoacoustic image of an object, a photoacoustic sensing structure, and a photoacoustic image capturing method are provided. The photoacoustic imaging apparatus includes an electromagnetic wave source for emitting an electromagnetic wave, a first electromagnetic wave transmissible substrate disposed on a transmission path of the electromagnetic wave, electromagnetic wave transmitting needles disposed on the first electromagnetic wave transmissible substrate, and an ultrasonic sensor disposed at one side of the object. The electromagnetic wave transmitting needles can be inserted into the object. The electromagnetic wave is transmitted to at least a part of the electromagnetic wave transmitting needles through the first electromagnetic wave transmissible substrate and to the inside of the object through at least the part of the electromagnetic wave transmitting needles.
    Type: Application
    Filed: December 28, 2011
    Publication date: June 6, 2013
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Shih-Bin Luo, De-Yi Chiou, Hsiu-Hsiang Chen, Wan-Ting Tien
  • Publication number: 20130042688
    Abstract: A photoacoustic imaging apparatus for detecting a photoacoustic image of a detected object is provided. The photoacoustic imaging apparatus includes a laser probe and a transparent ultrasonic sensor. The laser probe is configured to emit a laser beam. The transparent ultrasonic sensor is disposed over the laser probe. The laser beam emitted from the laser probe passes through the transparent ultrasonic sensor to be transmitted to the detected object.
    Type: Application
    Filed: April 2, 2012
    Publication date: February 21, 2013
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Shih-Bin Luo, Hsiu-Hsiang Chen, De-Yi Chiou, Wan-Ting Tien