Patents by Inventor Dean Badillo

Dean Badillo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9306402
    Abstract: Circuits for charging capacitors in connection with oscillators are described. The oscillator may include a mechanical resonator. The circuits may include a charging element and a switched capacitor subcircuit to control operation of the charging element, and may be considered a charging circuit in some scenarios. The charging circuits may provide rapid charging of a capacitor to provide a reference voltage to the oscillator.
    Type: Grant
    Filed: February 6, 2014
    Date of Patent: April 5, 2016
    Assignee: Analog Devices, Inc.
    Inventors: Dean A. Badillo, Mohammad Asmani, Klaus Juergen Schoepf, Reimund Rebel, Peiqing Zhu
  • Publication number: 20160018838
    Abstract: A dB-linear voltage-to-current (V/I) converter is amenable to implementation in CMOS technology. In a representative embodiment, the dB-linear V/I converter has a voltage scaler, a current multiplier, and an exponential current converter serially connected to one another. The voltage scaler supplies an input current to the current multiplier based on an input voltage. The current multiplier multiplies the input current and a current proportional to absolute temperature and supplies the resulting current to the exponential current converter. The exponential current converter has a differential MOSFET pair operating in a sub-threshold mode and generating an output current that is proportional to a temperature-independent, exponential function of the input voltage.
    Type: Application
    Filed: July 22, 2015
    Publication date: January 21, 2016
    Inventors: Hasan Akyol, Bipul Agarwal, Dean Badillo
  • Patent number: 9124230
    Abstract: A dB-linear voltage-to-current (V/I) converter that is amenable to implementation in CMOS technology. In a representative embodiment, the dB-linear V/I converter has a voltage scaler, a current multiplier, and an exponential current converter serially connected to one another. The voltage scaler supplies an input current to the current multiplier based on an input voltage. The current multiplier multiplies the input current and a current proportional to absolute temperature and supplies the resulting current to the exponential current converter. The exponential current converter has a differential MOSFET pair operating in a sub-threshold mode and generating an output current that is proportional to a temperature-independent, exponential function of the input voltage.
    Type: Grant
    Filed: October 26, 2011
    Date of Patent: September 1, 2015
    Assignee: Skyworks Solutions, Inc.
    Inventors: Hasan Akyol, Bipul Agarwal, Dean Badillo
  • Publication number: 20150117675
    Abstract: A buffer is coupled to an acoustic motor. The buffer has an input and an output. The input has an input voltage and the output has an output voltage. The buffer is coupled to a load. The buffer includes an input transistor and push-pull transistor circuitry. The input transistor has a gate, a source, and a drain, a gate-to-source capacitance, and an area. The push-pull transistor circuitry is coupled to the input transistor. Under a first set of operating conditions, the gate to source voltage of the input transistor remains constant and the output voltage is a buffered copy of the input voltage. Under a second set of operating conditions, the push-pull transistor circuitry selectively sinks or sources additional current to the load so that linearity of buffer operation is provided. A gate-to-drain capacitance of the input transistor is buffered allowing the area of the input transistor to be increased without reducing the gain of the motor.
    Type: Application
    Filed: May 16, 2014
    Publication date: April 30, 2015
    Applicant: Knowles Electronics, LLC
    Inventors: Michael Jennings, Craig Stein, Dean Badillo
  • Patent number: 8878619
    Abstract: A variable phase amplifier circuit is disclosed and its method of use in tuning devices having resonators. The variable phase amplifier receives an input differential signal pair. The input differential signal pair can be generated by a resonator device. The variable phase amplifier generates a modified differential signal pair in response to receiving the input differential signal pair. The variable phase amplifier provides a means to vary the phase of the modified differential signal pair with respect to the input differential signal pair, in an accurate and stable manner. If the modified differential signal pair with a phase shift introduced in it is fed back to the resonator device, the resonator will change its frequency of oscillation, where the new frequency of oscillation is a function of the phase of the modified differential signal pair.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: November 4, 2014
    Assignee: Sand 9, Inc.
    Inventors: Dean A. Badillo, Klaus Juergen Schoepf, Reimund Rebel
  • Patent number: 8736319
    Abstract: The disclosed power-on reset circuit provides an indication of when and whether a supply voltage Vdd has reached a trigger voltage level Vtrig. The disclosed circuit includes a flip-flop circuit and a first comparator circuit. The circuit according to the invention has a D input node of the flip-flop circuit coupled to the supply voltage. The first comparator circuit outputs a clock signal, where the flip-flop circuit is clocked by the clock signal. A Q output node of the flip-flop circuit provides the power-on reset signal, where the power-on reset signal is in a LO state when the supply voltage is at a voltage level that is less than the trigger voltage level Vtrig. The power-on reset signal is in a HI state when the supply voltage is at a voltage level that is greater than the trigger voltage level Vtrig.
    Type: Grant
    Filed: March 7, 2013
    Date of Patent: May 27, 2014
    Assignee: Sand 9, Inc.
    Inventors: Bruce M. Newman, Dean A. Badillo, Reimund Rebel, Klaus Juergen Schoepf, Mohammad Asmani
  • Publication number: 20140097906
    Abstract: A single-stage buffer apparatus includes a first transistor, a second transistor, and a high pass filter network. The first transistor is configured to receive an input signal from a microphone. The second transistor is configured to operate as a cascode transistor. The high pass filter network is coupled to the first transistor and the second transistor. The second transistor electrically decouples the first transistor from an output of the single-stage buffer apparatus. A gate terminal of the second transistor is driven by the high-pass filter network, and the high-pass filter network is driven by the first transistor.
    Type: Application
    Filed: September 30, 2013
    Publication date: April 10, 2014
    Applicant: Knowles Electronics, LLC
    Inventors: Michael Jennings, Craig Stein, Dean Badillo
  • Patent number: 8633739
    Abstract: Fractional frequency division is performed by sequentially selecting phase signals for division, where transitioning from a previous phase signal to a next phase signal for division occurs in response to not only the frequency-divided previous phase signal but also a second one of the phase signals. A phase transition that is triggered at least in part in response to a second phase signal having a phase that is greater (with respect to the phase signal sequence) than the phase of the next phase signal can aid minimization of signal glitches. The first frequency-divided signal can be further divided to produce a second frequency-divided signal having a 50-percent duty cycle.
    Type: Grant
    Filed: June 27, 2011
    Date of Patent: January 21, 2014
    Assignee: Skyworks Solutions, Inc.
    Inventor: Dean A. Badillo
  • Patent number: 8614593
    Abstract: A differential current signal circuit is described which includes a voltage to differential current converter circuit that generates a differential pair of current output signals in response to receiving a voltage input signal, where the differential pair of current output signals are linearly proportional to the voltage input signal within a voltage operating range from a minimum operating voltage to a maximum operating voltage. The differential pair of current output signals are linear over a wide range of voltage input signals. A correction circuit is included which eliminates voltage offsets in the voltage operating range due to process and temperature variations. The correction circuit also provides the capability to adjust the minimum operating voltage, and eliminates variations in the minimum operating voltage due to process and temperature variations.
    Type: Grant
    Filed: April 9, 2013
    Date of Patent: December 24, 2013
    Assignee: Sand 9, Inc.
    Inventors: Dean A. Badillo, David R. LoCascio
  • Patent number: 8441288
    Abstract: A differential current signal circuit is described which includes a voltage to differential current converter circuit that generates a differential pair of current output signals in response to receiving a voltage input signal, where the differential pair of current output signals are linearly proportional to the voltage input signal within a voltage operating range from a minimum operating voltage to a maximum operating voltage. The differential pair of current output signals are linear over a wide range of voltage input signals. A correction circuit is included which eliminates voltage offsets in the voltage operating range due to process and temperature variations. The correction circuit also provides the capability to adjust the minimum operating voltage, and eliminates variations in the minimum operating voltage due to process and temperature variations.
    Type: Grant
    Filed: April 19, 2011
    Date of Patent: May 14, 2013
    Assignee: Sand 9, Inc.
    Inventors: Dean A. Badillo, David R. LoCascio
  • Publication number: 20130106473
    Abstract: The disclosed power-on reset circuit provides an indication of when and whether a supply voltage Vdd has reached a trigger voltage level Vtrig. The disclosed circuit includes a flip-flop circuit and a first comparator circuit. The circuit according to the invention has a D input node of the flip-flop circuit coupled to the supply voltage. The first comparator circuit outputs a clock signal, where the flip-flop circuit is clocked by the clock signal. A Q output node of the flip-flop circuit provides the power-on reset signal, where the power-on reset signal is in a LO state when the supply voltage is at a voltage level that is less than the trigger voltage level Vtrig. The power-on reset signal is in a HI state when the supply voltage is at a voltage level that is greater than the trigger voltage level Vtrig.
    Type: Application
    Filed: October 26, 2011
    Publication date: May 2, 2013
    Applicant: SAND 9, INC.
    Inventors: Bruce M. Newman, Dean A. Badillo, Reimund Rebel, Klaus Juergen Schoepf, Mohammad Asmani
  • Patent number: 8415993
    Abstract: The disclosed power-on reset circuit provides an indication of when and whether a supply voltage Vdd has reached a trigger voltage level Vtrig. The disclosed circuit includes a flip-flop circuit and a first comparator circuit. The circuit according to the invention has a D input node of the flip-flop circuit coupled to the supply voltage. The first comparator circuit outputs a clock signal, where the flip-flop circuit is clocked by the clock signal. A Q output node of the flip-flop circuit provides the power-on reset signal, where the power-on reset signal is in a LO state when the supply voltage is at a voltage level that is less than the trigger voltage level Vtrig. The power-on reset signal is in a HI state when the supply voltage is at a voltage level that is greater than the trigger voltage level Vtrig.
    Type: Grant
    Filed: October 26, 2011
    Date of Patent: April 9, 2013
    Assignee: Sand 9, Inc.
    Inventors: Bruce M. Newman, Dean A. Badillo, Reimund Rebel, Klaus Juergen Schoepf, Mohammad Asmani
  • Patent number: 8395456
    Abstract: A variable phase amplifier circuit is disclosed and its method of use in tuning devices having resonators. The variable phase amplifier receives an input differential signal pair. The input differential signal pair can be generated by a resonator device. The variable phase amplifier generates a modified differential signal pair in response to receiving the input differential signal pair. The variable phase amplifier provides a means to vary the phase of the modified differential signal pair with respect to the input differential signal pair, in an accurate and stable manner. If the modified differential signal pair with a phase shift introduced in it is fed back to the resonator device, the resonator will change its frequency of oscillation, where the new frequency of oscillation is a function of the phase of the modified differential signal pair.
    Type: Grant
    Filed: March 16, 2011
    Date of Patent: March 12, 2013
    Assignee: Sand 9, Inc.
    Inventors: Dean A. Badillo, Reimund Rebel, Klaus Juergen Schoepf
  • Publication number: 20120268169
    Abstract: A differential current signal circuit is described which includes a voltage to differential current converter circuit that generates a differential pair of current output signals in response to receiving a voltage input signal, where the differential pair of current output signals are linearly proportional to the voltage input signal within a voltage operating range from a minimum operating voltage to a maximum operating voltage. The differential pair of current output signals are linear over a wide range of voltage input signals. A correction circuit is included which eliminates voltage offsets in the voltage operating range due to process and temperature variations. The correction circuit also provides the capability to adjust the minimum operating voltage, and eliminates variations in the minimum operating voltage due to process and temperature variations.
    Type: Application
    Filed: April 19, 2011
    Publication date: October 25, 2012
    Applicant: SAND 9, INC.
    Inventors: Dean A. Badillo, David R. LoCascio
  • Publication number: 20120038418
    Abstract: A dB-linear voltage-to-current (V/I) converter that is amenable to implementation in CMOS technology. In a representative embodiment, the dB-linear V/I converter has a voltage scaler, a current multiplier, and an exponential current converter serially connected to one another. The voltage scaler supplies an input current to the current multiplier based on an input voltage. The current multiplier multiplies the input current and a current proportional to absolute temperature and supplies the resulting current to the exponential current converter. The exponential current converter has a differential MOSFET pair operating in a sub-threshold mode and generating an output current that is proportional to a temperature-independent, exponential function of the input voltage.
    Type: Application
    Filed: October 26, 2011
    Publication date: February 16, 2012
    Applicant: SKYWORKS SOLUTIONS, INC.
    Inventors: Hasan Akyol, Bipul Agarwal, Dean Badillo
  • Publication number: 20120019288
    Abstract: Fractional frequency division is performed by sequentially selecting phase signals for division, where transitioning from a previous phase signal to a next phase signal for division occurs in response to not only the frequency-divided previous phase signal but also a second one of the phase signals. A phase transition that is triggered at least in part in response to a second phase signal having a phase that is greater (with respect to the phase signal sequence) than the phase of the next phase signal can aid minimization of signal glitches. The first frequency-divided signal can be further divided to produce a second frequency-divided signal having a 50-percent duty cycle.
    Type: Application
    Filed: June 27, 2011
    Publication date: January 26, 2012
    Applicant: SKYWORKS SOLUTIONS, INC.
    Inventor: Dean Badillo
  • Patent number: 8072245
    Abstract: A dB-linear voltage-to-current (V/I) converter that is amenable to implementation in CMOS technology. In a representative embodiment, the dB-linear V/I converter has a voltage scaler, a current multiplier, and an exponential current converter serially connected to one another. The voltage scaler supplies an input current to the current multiplier based on an input voltage. The current multiplier multiplies the input current and a current proportional to absolute temperature and supplies the resulting current to the exponential current converter. The exponential current converter has a differential MOSFET pair operating in a sub-threshold mode and generating an output current that is proportional to a temperature-independent, exponential function of the input voltage.
    Type: Grant
    Filed: February 2, 2009
    Date of Patent: December 6, 2011
    Assignee: Skyworks Solutions, Inc.
    Inventors: Hasan Akyol, Bipul Agarwal, Dean Badillo
  • Publication number: 20110163819
    Abstract: A variable phase amplifier circuit is disclosed and its method of use in tuning devices having resonators. The variable phase amplifier receives an input differential signal pair. The input differential signal pair can be generated by a resonator device. The variable phase amplifier generates a modified differential signal pair in response to receiving the input differential signal pair. The variable phase amplifier provides a means to vary the phase of the modified differential signal pair with respect to the input differential signal pair, in an accurate and stable manner. If the modified differential signal pair with a phase shift introduced in it is fed back to the resonator device, the resonator will change its frequency of oscillation, where the new frequency of oscillation is a function of the phase of the modified differential signal pair.
    Type: Application
    Filed: March 16, 2011
    Publication date: July 7, 2011
    Applicant: SAND 9, INC.
    Inventors: Dean A. Badillo, Reimund Rebel, Klaus Juergen Schoepf
  • Patent number: 7969209
    Abstract: Fractional frequency division is performed by sequentially selecting phase signals for division, where transitioning from a previous phase signal to a next phase signal for division occurs in response to not only the frequency-divided previous phase signal but also a second one of the phase signals. A phase transition that is triggered at least in part in response to a second phase signal having a phase that is greater (with respect to the phase signal sequence) than the phase of the next phase signal can aid minimization of signal glitches. The first frequency-divided signal can be further divided to produce a second frequency-divided signal having a 50-percent duty cycle.
    Type: Grant
    Filed: April 1, 2009
    Date of Patent: June 28, 2011
    Assignee: Skyworks Solutions, Inc.
    Inventor: Dean A. Badillo
  • Publication number: 20110057736
    Abstract: In a voltage-controlled ring oscillator, one or more controllable current sources generate a bias current in response to a tuning voltage. Any of several features can be included to promote frequency tuning linearity. In accordance with one feature, the ring oscillator circuit transistors can be sized relative to one another to skew the rise and fall times of the ring oscillator output signal with respect to one another. In accordance with another feature, a peak limiter can limit the oscillation amplitude in response to the bias current. In accordance with still another feature, a controllable bias current source can include a voltage-to-current converter and one or more groups of digitally controlled current source transistors.
    Type: Application
    Filed: November 12, 2010
    Publication date: March 10, 2011
    Applicant: SKYWORKS SOLUTIONS, INC.
    Inventor: Dean A. Badillo