Patents by Inventor Dean C. Jennings

Dean C. Jennings has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9737959
    Abstract: The thermal processing device includes a stage, a continuous wave electromagnetic radiation source, a series of lenses, a translation mechanism, a detection module, a three-dimensional auto-focus, and a computer system. The stage is configured to receive a substrate thereon. The continuous wave electromagnetic radiation source is disposed adjacent the stage, and is configured to emit continuous wave electromagnetic radiation along a path towards the substrate. The series of lenses is disposed between the continuous wave electromagnetic radiation source and the stage, and are configured to condense the continuous wave electromagnetic radiation into a line of continuous wave electromagnetic radiation on a surface of the substrate. The translation mechanism is configured to translate the stage and the line of continuous wave electromagnetic radiation relative to one another. The detection module is positioned within the path, and is configured to detect continuous wave electromagnetic radiation.
    Type: Grant
    Filed: September 5, 2014
    Date of Patent: August 22, 2017
    Assignee: Applied Materials, Inc.
    Inventors: Dean C. Jennings, Mark Yam, Abhilash J. Mayur, Vernon Behrens, Paul A. O'Brien, Leonid M. Teritski, Alexander Goldin
  • Publication number: 20150053659
    Abstract: The thermal processing device includes a stage, a continuous wave electromagnetic radiation source, a series of lenses, a translation mechanism, a detection module, a three-dimensional auto-focus, and a computer system. The stage is configured to receive a substrate thereon. The continuous wave electromagnetic radiation source is disposed adjacent the stage, and is configured to emit continuous wave electromagnetic radiation along a path towards the substrate. The series of lenses is disposed between the continuous wave electromagnetic radiation source and the stage, and are configured to condense the continuous wave electromagnetic radiation into a line of continuous wave electromagnetic radiation on a surface of the substrate. The translation mechanism is configured to translate the stage and the line of continuous wave electromagnetic radiation relative to one another. The detection module is positioned within the path, and is configured to detect continuous wave electromagnetic radiation.
    Type: Application
    Filed: September 5, 2014
    Publication date: February 26, 2015
    Inventors: Dean C. Jennings, Mark Yam, Abhilash J. Mayur, Vernon Behrens, Paul A. O'Brien, Leonid M. Teritski, Alexander Goldin
  • Patent number: 8829393
    Abstract: The thermal processing device includes a stage, a continuous wave electromagnetic radiation source, a series of lenses, a translation mechanism, a detection module, a three-dimensional auto-focus, and a computer system. The stage is configured to receive a substrate thereon. The continuous wave electromagnetic radiation source is disposed adjacent the stage, and is configured to emit continuous wave electromagnetic radiation along a path towards the substrate. The series of lenses is disposed between the continuous wave electromagnetic radiation source and the stage, and are configured to condense the continuous wave electromagnetic radiation into a line of continuous wave electromagnetic radiation on a surface of the substrate. The translation mechanism is configured to translate the stage and the line of continuous wave electromagnetic radiation relative to one another. The detection module is positioned within the path, and is configured to detect continuous wave electromagnetic radiation.
    Type: Grant
    Filed: April 9, 2012
    Date of Patent: September 9, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Dean C. Jennings, Mark Yam, Abhilash J. Mayur, Vernon Behrens, Paul A. O'Brien, Leonid M. Tertitski, Alexander Goldin
  • Patent number: 8796769
    Abstract: A method including introducing a species into a substrate including semiconductor material; and translating linearly focused electromagnetic radiation across a surface of the substrate, the electromagnetic radiation being sufficient to thermally influence the species. An apparatus including an electromagnetic radiation source; a stage having dimensions suitable for accommodating a semiconductor substrate within a chamber; an optical element disposed between the electromagnetic radiation source and the stage to focus radiation from the electromagnetic radiation source into a line having a length determined by the diameter of a substrate to be placed on the stage; and a controller coupled to the electromagnetic radiation source including machine readable program instructions that allow the controller to control the depth into which a substrate is exposed to the radiation.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: August 5, 2014
    Assignee: Applied Matierials, Inc.
    Inventors: Dean C. Jennings, Amir Al-Bayati
  • Patent number: 8432613
    Abstract: Substrate processing equipment and methods are used to improve the uniformity of illumination across an illuminated portion of a substrate by processing light with multiple optical homogenizers. The multiple optical homogenizers each include micro-lens arrays and Fourier lens. The multiple optical homogenizers are arranged so that the output numerical aperture of one of the optical homogenizers is within 5% of the input numerical aperture of another optical homogenizer.
    Type: Grant
    Filed: April 18, 2010
    Date of Patent: April 30, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Dean C. Jennings, Timothy N. Thomas, Samuel C. Howells, Bruce E. Adams, Jiping Li
  • Publication number: 20130008878
    Abstract: A method including introducing a species into a substrate including semiconductor material; and translating linearly focused electromagnetic radiation across a surface of the substrate, the electromagnetic radiation being sufficient to thermally influence the species. An apparatus including an electromagnetic radiation source; a stage having dimensions suitable for accommodating a semiconductor substrate within a chamber; an optical element disposed between the electromagnetic radiation source and the stage to focus radiation from the electromagnetic radiation source into a line having a length determined by the diameter of a substrate to be placed on the stage; and a controller coupled to the electromagnetic radiation source including machine readable program instructions that allow the controller to control the depth into which a substrate is exposed to the radiation.
    Type: Application
    Filed: September 14, 2012
    Publication date: January 10, 2013
    Applicant: Applied Materials, Inc.
    Inventors: Dean C. Jennings, Amir Al-Bayati
  • Patent number: 8316867
    Abstract: Methods and apparatus for cleaning electrostatic chucks in processing chambers are provided. The process comprises flowing a backside gas comprising a reactive agent into a zone in a process chamber, the zone defined by a space between a surface of an electrostatic chuck or of a cleaning station and a surface of a substrate. The surface of the electrostatic chuck is etched with the reactive agent to remove debris. An apparatus for cleaning an electrostatic chuck is also provided, the apparatus comprising: a process chamber; an elongate arm having a reach disposed through a wall of the process chamber; an electrostatic chuck attached to the elongate arm; a cleaning station located within the reach of the elongate arm; and a reactive gas source that is operatively connected to the cleaning station.
    Type: Grant
    Filed: July 25, 2011
    Date of Patent: November 27, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Dean C. Jennings, Majeed Foad, Jonathan Simmons
  • Patent number: 8288239
    Abstract: A method including introducing a species into a substrate including semiconductor material; and translating linearly focused electromagnetic radiation across a surface of the substrate, the electromagnetic radiation being sufficient to thermally influence the species. An apparatus including an electromagnetic radiation source; a stage having dimensions suitable for accommodating a semiconductor substrate within a chamber; an optical element disposed between the electromagnetic radiation source and the stage to focus radiation from the electromagnetic radiation source into a line having a length determined by the diameter of a substrate to be placed on the stage; and a controller coupled to the electromagnetic radiation source including machine readable program instructions that allow the controller to control the depth into which a substrate is exposed to the radiation.
    Type: Grant
    Filed: September 30, 2002
    Date of Patent: October 16, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Dean C. Jennings, Amir Al-Bayati
  • Patent number: 8288685
    Abstract: The thermal processing device includes a stage, a continuous wave electromagnetic radiation source, a series of lenses, a translation mechanism, a detection module, a three-dimensional auto-focus, and a computer system. The stage is configured to receive a substrate thereon. The continuous wave electromagnetic radiation source is disposed adjacent the stage, and is configured to emit continuous wave electromagnetic radiation along a path towards the substrate. The series of lenses is disposed between the continuous wave electromagnetic radiation source and the stage, and are configured to condense the continuous wave electromagnetic radiation into a line of continuous wave electromagnetic radiation on a surface of the substrate. The translation mechanism is configured to translate the stage and the line of continuous wave electromagnetic radiation relative to one another. The detection module is positioned within the path, and is configured to detect continuous wave electromagnetic radiation.
    Type: Grant
    Filed: December 29, 2010
    Date of Patent: October 16, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Dean C. Jennings, Mark Yam, Abhilash J. Mayur, Vernon Behrens, Paul A. O'Brien, Leonid M. Tertitski, Alexander Goldin
  • Publication number: 20120205347
    Abstract: The thermal processing device includes a stage, a continuous wave electromagnetic radiation source, a series of lenses, a translation mechanism, a detection module, a three-dimensional auto-focus, and a computer system. The stage is configured to receive a substrate thereon. The continuous wave electromagnetic radiation source is disposed adjacent the stage, and is configured to emit continuous wave electromagnetic radiation along a path towards the substrate. The series of lenses is disposed between the continuous wave electromagnetic radiation source and the stage, and are configured to condense the continuous wave electromagnetic radiation into a line of continuous wave electromagnetic radiation on a surface of the substrate. The translation mechanism is configured to translate the stage and the line of continuous wave electromagnetic radiation relative to one another. The detection module is positioned within the path, and is configured to detect continuous wave electromagnetic radiation.
    Type: Application
    Filed: April 9, 2012
    Publication date: August 16, 2012
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Dean C. Jennings, Mark Yam, Abhilash J. Mayur, Vernon Behrens, Paul A. O'Brien, Leonid M. Tertitski, Alexander Goldin
  • Patent number: 8178819
    Abstract: The thermal processing device includes a stage, a continuous wave electromagnetic radiation source, a series of lenses, a translation mechanism, a detection module, a three-dimensional auto-focus, and a computer system. The stage is configured to receive a substrate thereon. The continuous wave electromagnetic radiation source is disposed adjacent the stage, and is configured to emit continuous wave electromagnetic radiation along a path towards the substrate. The series of lenses is disposed between the continuous wave electromagnetic radiation source and the stage, and are configured to condense the continuous wave electromagnetic radiation into a line of continuous wave electromagnetic radiation on a surface of the substrate. The translation mechanism is configured to translate the stage and the line of continuous wave electromagnetic radiation relative to one another. The detection module is positioned within the path, and is configured to detect continuous wave electromagnetic radiation.
    Type: Grant
    Filed: March 14, 2005
    Date of Patent: May 15, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Dean C. Jennings, Mark Yam, Abhilash J. Mayur, Vernon Behrens, Paul A. O'Brien, Leonid M. Tertitski, Alexander Goldin
  • Publication number: 20110277932
    Abstract: Methods and apparatus for cleaning electrostatic chucks in processing chambers are provided. The process comprises flowing a backside gas comprising a reactive agent into a zone in a process chamber, the zone defined by a space between a surface of an electrostatic chuck or of a cleaning station and a surface of a substrate. The surface of the electrostatic chuck is etched with the reactive agent to remove debris. An apparatus for cleaning an electrostatic chuck is also provided, the apparatus comprising: a process chamber; an elongate arm having a reach disposed through a wall of the process chamber; an electrostatic chuck attached to the elongate arm; a cleaning station located within the reach of the elongate arm; and a reactive gas source that is operatively connected to the cleaning station.
    Type: Application
    Filed: July 25, 2011
    Publication date: November 17, 2011
    Applicant: Applied Materials, Inc.
    Inventors: Dean C. Jennings, Majeed Foad, Jonathan Simmons
  • Patent number: 7993465
    Abstract: Methods and apparatus for cleaning electrostatic chucks in processing chambers are provided. The process comprises flowing a backside gas comprising a reactive agent into a zone in a process chamber, the zone defined by a space between a surface of an electrostatic chuck or of a cleaning station and a surface of a substrate. The surface of the electrostatic chuck is etched with the reactive agent to remove debris. An apparatus for cleaning an electrostatic chuck is also provided, the apparatus comprising: a process chamber; an elongate arm having a reach disposed through a wall of the process chamber; an electrostatic chuck attached to the elongate arm; a cleaning station located within the reach of the elongate arm; and a reactive gas source that is operatively connected to the cleaning station.
    Type: Grant
    Filed: September 7, 2006
    Date of Patent: August 9, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Dean C. Jennings, Majeed Foad, Jonathon Simmons
  • Publication number: 20110095007
    Abstract: The thermal processing device includes a stage, a continuous wave electromagnetic radiation source, a series of lenses, a translation mechanism, a detection module, a three-dimensional auto-focus, and a computer system. The stage is configured to receive a substrate thereon. The continuous wave electromagnetic radiation source is disposed adjacent the stage, and is configured to emit continuous wave electromagnetic radiation along a path towards the substrate. The series of lenses is disposed between the continuous wave electromagnetic radiation source and the stage, and are configured to condense the continuous wave electromagnetic radiation into a line of continuous wave electromagnetic radiation on a surface of the substrate. The translation mechanism is configured to translate the stage and the line of continuous wave electromagnetic radiation relative to one another. The detection module is positioned within the path, and is configured to detect continuous wave electromagnetic radiation.
    Type: Application
    Filed: December 29, 2010
    Publication date: April 28, 2011
    Applicant: Applied Materials, Inc.
    Inventors: Dean C. Jennings, Mark Yam, Abhilash J. Mayur, Vernon Behrens, Paul A. O'Brien, Leonid M. Tertitski, Alexander Goldin
  • Patent number: 7875829
    Abstract: The thermal processing device includes a stage, a continuous wave electromagnetic radiation source, a series of lenses, a translation mechanism, a detection module, a three-dimensional auto-focus, and a computer system. The stage is configured to receive a substrate thereon. The continuous wave electromagnetic radiation source is disposed adjacent the stage, and is configured to emit continuous wave electromagnetic radiation along a path towards the substrate. The series of lenses is disposed between the continuous wave electromagnetic radiation source and the stage, and are configured to condense the continuous wave electromagnetic radiation into a line of continuous wave electromagnetic radiation on a surface of the substrate. The translation mechanism is configured to translate the stage and the line of continuous wave electromagnetic radiation relative to one another. The detection module is positioned within the path, and is configured to detect continuous wave electromagnetic radiation.
    Type: Grant
    Filed: November 20, 2006
    Date of Patent: January 25, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Dean C. Jennings, Mark Yam, Abhilash J. Mayur, Vernon Behrens, Paul A. O'Brien, Leonid M. Tertitski, Alexander Goldin
  • Patent number: 7872209
    Abstract: The thermal processing device includes a stage, a continuous wave electromagnetic radiation source, a series of lenses, a translation mechanism, a detection module, a three-dimensional auto-focus, and a computer system. The stage is configured to receive a substrate thereon. The continuous wave electromagnetic radiation source is disposed adjacent the stage, and is configured to emit continuous wave electromagnetic radiation along a path towards the substrate. The series of lenses is disposed between the continuous wave electromagnetic radiation source and the stage, and are configured to condense the continuous wave electromagnetic radiation into a line of continuous wave electromagnetic radiation on a surface of the substrate. The translation mechanism is configured to translate the stage and the line of continuous wave electromagnetic radiation relative to one another. The detection module is positioned within the path, and is configured to detect continuous wave electromagnetic radiation.
    Type: Grant
    Filed: October 25, 2007
    Date of Patent: January 18, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Dean C. Jennings, Mark Yam, Abhilash J. Mayur, Vernon Behrens, Paul A. O'Brien, Leonid M. Tertitski, Alexander Goldin
  • Patent number: 7837357
    Abstract: An illumination system has a light source, an optical train, and a wavelength beam splitter. The optical train focuses light from the light source into a defined geometrical pattern on a surface. The wavelength beam splitter transmits light of a first wavelength and redirects light of a second wavelength. One of these wavelengths is included by the light from the light source, while the other is an emission wavelength generated by thermal excitation of the surface by the focused geometrical pattern.
    Type: Grant
    Filed: June 30, 2006
    Date of Patent: November 23, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Dean C. Jennings, Timothy N. Thomas
  • Publication number: 20100266268
    Abstract: Substrate processing equipment and methods are used to improve the uniformity of illumination across an illuminated portion of a substrate by processing light with multiple optical homogenizers. The multiple optical homogenizers each include micro-lens arrays and Fourier lens. The multiple optical homogenizers are arranged so that the output numerical aperture of one of the optical homogenizers is within 5% of the input numerical aperture of another optical homogenizer.
    Type: Application
    Filed: April 18, 2010
    Publication date: October 21, 2010
    Applicant: Applied Materials, Inc.
    Inventors: Dean C. Jennings, Timothy N. Thomas, Samuel C. Howells, Bruce E. Adams, Jiping Li
  • Publication number: 20090015830
    Abstract: Methods and devices are provided for profiling a beam of light that includes a wavelength ?. The beam of light is received. Secondary light is generated at a wavelength ?? different from wavelength ? by fluorescing a material with the received beam of light. The secondary light is separated from the received beam of light. The separated secondary light is optically directed to a sensor.
    Type: Application
    Filed: August 29, 2008
    Publication date: January 15, 2009
    Applicant: Applied Materials, Inc.
    Inventors: Timothy N. Thomas, Bruce Adams, Dean C. Jennings
  • Patent number: 7440088
    Abstract: Methods and devices are provided for profiling a beam of light that includes a wavelength ?. The beam of light is received. Secondary light is generated at a wavelength ?? different from wavelength ? by fluorescing a material with the received beam of light. The secondary light is separated from the received beam of light. The separated secondary light is optically directed to a sensor.
    Type: Grant
    Filed: October 28, 2005
    Date of Patent: October 21, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Timothy N. Thomas, Bruce Adams, Dean C. Jennings