Patents by Inventor Dean Jennings

Dean Jennings has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100264123
    Abstract: A thermal processing apparatus and method in which a first laser source, for example, a CO2 emitting at 10.6 ?m is focused onto a silicon wafer as a line beam and a second laser source, for example, a GaAs laser bar emitting at 808 nm is focused onto the wafer as a larger beam surrounding the line beam. The two beams are scanned in synchronism in the direction of the narrow dimension of the line beam to create a narrow heating pulse from the line beam when activated by the larger beam. The energy of GaAs radiation is greater than the silicon bandgap energy and creates free carriers. The energy of the CO2 radiation is less than the silicon bandgap energy so silicon is otherwise transparent to it, but the long wavelength radiation is absorbed by the free carriers.
    Type: Application
    Filed: June 28, 2010
    Publication date: October 21, 2010
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Dean Jennings, Haifan Liang, Mark Yam, Vijay Parihar, Abhilash J. Mayur, Aaron Hunter, Bruce Adams, Joseph Michael Ranish
  • Patent number: 7795816
    Abstract: A laser beam is modulated at a very high frequency to produce uniform radiant flux densities on substrate surface processing regions during thermal processing. Beam modulation is achieved by passing the laser beam through a plasma which causes phase randomization within the laser beam. This method may be used for any application where intense, uniform illumination is desired, such as pulsed laser annealing, ablating, and wafer stepper illuminating.
    Type: Grant
    Filed: October 8, 2007
    Date of Patent: September 14, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Dean Jennings, Bruce E. Adams, Timothy N. Thomas, Stephen Moffatt
  • Patent number: 7772134
    Abstract: A thermal processing apparatus and method in which a first laser source, for example, a CO2 emitting at 10.6 ?m is focused onto a silicon wafer as a line beam and a second laser source, for example, a GaAs laser bar emitting at 808 nm is focused onto the wafer as a larger beam surrounding the line beam. The two beams are scanned in synchronism in the direction of the narrow dimension of the line beam to create a narrow heating pulse from the line beam when activated by the larger beam. The energy of GaAs radiation is greater than the silicon bandgap energy and creates free carriers. The energy of the CO2 radiation is less than the silicon bandgap energy so silicon is otherwise transparent to it, but the long wavelength radiation is absorbed by the free carriers.
    Type: Grant
    Filed: August 24, 2009
    Date of Patent: August 10, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Dean Jennings, Haifan Liang, Mark Yam, Vijay Parihar, Abhilash Mayur, Aaron Hunter, Bruce Adams, Joseph Michael Ranish
  • Patent number: 7717617
    Abstract: A thermal processing system includes a source of laser radiation emitting at a laser wavelength, beam projection optics disposed between the reflective surface and a substrate support capable of holding a substrate to be processed, a pyrometer responsive to a pyrometer wavelength, and a wavelength responsive optical element having a first optical path for light in a first wavelength range including the laser wavelength, the first optical path being between the source of laser radiation and the beam projection optics, and a second optical path for light in a second wavelength range including the pyrometer wavelength, the second optical path being between the beam projection optics and the pyrometer. The system can further include a pyrometer wavelength blocking filter between the source of laser radiation and the wavelength responsive optical element.
    Type: Grant
    Filed: September 12, 2008
    Date of Patent: May 18, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Bruce E. Adams, Dean Jennings, Aaron M. Hunter, Abhilash J. Mayur, Vijay Parihar, Timothy N. Thomas
  • Patent number: 7674999
    Abstract: A dynamic surface anneal apparatus for annealing a semiconductor workpiece has a workpiece support for supporting a workpiece, an optical source and scanning apparatus for scanning the optical source and the workpiece support relative to one another along a fast axis. The optical source includes an array of laser emitters arranged generally in successive rows of the emitters, the rows being transverse to the fast axis. Plural collimating lenslets overlie respective ones of the rows of emitters and provide collimation along the fast axis. The selected lenslets have one or a succession of optical deflection angles corresponding to beam deflections along the fast axis for respective rows of emitters. Optics focus light from the array of laser emitters onto a surface of the workpiece to form a succession of line beams transverse to the fast axis spaced along the fast axis in accordance with the succession of deflection angles.
    Type: Grant
    Filed: August 23, 2006
    Date of Patent: March 9, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Dean Jennings, Abhilash J. Mayur, Timothy N. Thomas, Vijay Parihar, Vedapuram S. Achutharaman, Randhir P. S. Thakur
  • Publication number: 20090311880
    Abstract: A thermal processing apparatus and method in which a first laser source, for example, a CO2 emitting at 10.6 ?m is focused onto a silicon wafer as a line beam and a second laser source, for example, a GaAs laser bar emitting at 808 nm is focused onto the wafer as a larger beam surrounding the line beam. The two beams are scanned in synchronism in the direction of the narrow dimension of the line beam to create a narrow heating pulse from the line beam when activated by the larger beam. The energy of GaAs radiation is greater than the silicon bandgap energy and creates free carriers. The energy of the CO2 radiation is less than the silicon bandgap energy so silicon is otherwise transparent to it, but the long wavelength radiation is absorbed by the free carriers.
    Type: Application
    Filed: August 24, 2009
    Publication date: December 17, 2009
    Applicant: Applied Materials, Inc.
    Inventors: Dean JENNINGS, Haifan LIANG, Mark YAM, Vijay PARIHAR, Abhilash J. MAYUR, Aaron HUNTER, Bruce ADAMS, Joseph Michael RANISH
  • Patent number: 7595208
    Abstract: A thermal processing apparatus and method in which a first laser source, for example, a CO2 emitting at 10.6 ?m is focused onto a silicon wafer as a line beam and a second laser source, for example, a GaAs laser bar emitting at 808 nm is focused onto the wafer as a larger beam surrounding the line beam. The two beams are scanned in synchronism in the direction of the narrow dimension of the line beam to create a narrow heating pulse from the line beam when activated by the larger beam. The energy of GaAs radiation is greater than the silicon bandgap energy and creates free carriers. The energy of the CO2 radiation is less than the silicon bandgap energy so silicon is otherwise transparent to it, but the long wavelength radiation is absorbed by the free carriers.
    Type: Grant
    Filed: August 10, 2007
    Date of Patent: September 29, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Dean Jennings, Haifan Liang, Mark Yam, Vijay Parihar, Abhilash Mayur, Aaron Hunter, Bruce Adams, Joseph Michael Ranish
  • Publication number: 20090236495
    Abstract: Apparatus for thermally processing a substrate includes a source of laser radiation comprising a plurality diode lasers arranged along a slow axis, optics directing the laser radiation from the source to the substrate, and an array of photodetectors arranged along a fast axis perpendicular to the slow axis and receiving portions of the laser radiation reflected from the substrate through the optics.
    Type: Application
    Filed: May 14, 2009
    Publication date: September 24, 2009
    Inventors: DEAN JENNINGS, TIMOTHY N. THOMAS
  • Patent number: 7569463
    Abstract: The present invention generally describes one or more apparatuses and various methods that are used to perform an annealing process on desired regions of a substrate. In one embodiment, an amount of energy is delivered to the surface of the substrate to preferentially melt certain desired regions of the substrate to remove unwanted damage created from prior processing steps (e.g., crystal damage from implant processes), more evenly distribute dopants in various regions of the substrate, and/or activate various regions of the substrate. The preferential melting processes will allow more uniform distribution of the dopants in the melted region, due to the increased diffusion rate and solubility of the dopant atoms in the molten region of the substrate. The creation of a melted region thus allows: 1) the dopant atoms to redistribute more uniformly, 2) defects created in prior processing steps to be removed, and 3) regions that have hyper-abrupt dopant concentrations to be formed.
    Type: Grant
    Filed: July 25, 2006
    Date of Patent: August 4, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Ajit Balakrishna, Paul Carey, Dean Jennings, Abhilash Mayur, Stephen Moffatt, William Schaffer, Mark Yam
  • Publication number: 20090152247
    Abstract: A dynamic surface anneal apparatus for annealing a semiconductor workpiece has a workpiece support for supporting a workpiece, an optical source and scanning apparatus for scanning the optical source and the workpiece support relative to one another along a fast axis. The optical source includes an array of laser emitters arranged generally in successive rows of the emitters, the rows being transverse to the fast axis. Plural collimating lenslets overlie respective ones of the rows of emitters and provide collimation along the fast axis. The selected lenslets have one or a succession of optical deflection angles corresponding to beam deflections along the fast axis for respective rows of emitters. Optics focus light from the array of laser emitters onto a surface of the workpiece to form a succession of line beams transverse to the fast axis spaced along the fast axis in accordance with the succession of deflection angles.
    Type: Application
    Filed: November 4, 2008
    Publication date: June 18, 2009
    Inventors: Dean Jennings, Abhilash J. Mayur, Timothy N. Thomas, Vijay Parihar, Vedapuram S. Achutharaman, Randhir P.S. Thakur
  • Patent number: 7548364
    Abstract: An apparatus for processing a coherent light pulse comprises a piezoelectric material having an optical interface surface and a surface acoustic wave (SAW) producing device disposed on the piezoelectric material. A coherent light pulse is dithered at a high frequency when it is reflected off of or transmitted through the optical interface surface. The SAW-producing device may be adapted to generate a travelling SAW or a standing SAW on the optical interface surface.
    Type: Grant
    Filed: July 31, 2006
    Date of Patent: June 16, 2009
    Assignee: Applied Materials, Inc.
    Inventor: Dean Jennings
  • Publication number: 20090091817
    Abstract: A laser beam is modulated at a very high frequency to produce uniform radiant flux densities on substrate surface processing regions during thermal processing. Beam modulation is achieved by passing the laser beam through a plasma which causes phase randomization within the laser beam. This method may be used for any application where intense, uniform illumination is desired, such as pulsed laser annealing, ablating, and wafer stepper illuminating.
    Type: Application
    Filed: October 8, 2007
    Publication date: April 9, 2009
    Inventors: Dean Jennings, Bruce E. Adams, Timothy N. Thomas, Stephen Moffatt
  • Publication number: 20090084986
    Abstract: A thermal processing system includes a source of laser radiation emitting at a laser wavelength, beam projection optics disposed between the reflective surface and a substrate support capable of holding a substrate to be processed, a pyrometer responsive to a pyrometer wavelength, and a wavelength responsive optical element having a first optical path for light in a first wavelength range including the laser wavelength, the first optical path being between the source of laser radiation and the beam projection optics, and a second optical path for light in a second wavelength range including the pyrometer wavelength, the second optical path being between the beam projection optics and the pyrometer. The system can further include a pyrometer wavelength blocking filter between the source of laser radiation and the wavelength responsive optical element.
    Type: Application
    Filed: September 12, 2008
    Publication date: April 2, 2009
    Inventors: Bruce E. Adams, Dean Jennings, Aaron M. Hunter, Abhilash J. Mayur, Vijay Parihar, Timothy N. Thomas
  • Patent number: 7494272
    Abstract: Apparatus for dynamic surface annealing of a semiconductor wafer includes a source of laser radiation emitting at a laser wavelength and comprising an array of lasers arranged in rows and columns, the optical power of each the laser being individual adjustable and optics for focusing the radiation from the array of lasers into a narrow line beam in a workpiece plane corresponding to a workpiece surface, whereby the optics images respective columns of the laser array onto respective sections of the narrow line beam. A pyrometer sensor is provided that is sensitive to a pyrometer wavelength. An optical element in an optical path of the optics is tuned to divert radiation emanating from the workpiece plane to the pyrometry sensor. As a result, the optics images each of the respective section of the narrow line beam onto a corresponding portion of the pyrometer sensor.
    Type: Grant
    Filed: September 1, 2006
    Date of Patent: February 24, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Timothy N. Thomas, Dean Jennings, Bruce E. Adams, Abhilash J. Mayur
  • Publication number: 20090046750
    Abstract: A method and apparatus for reducing the pulse-to-pulse laser energy variation (i.e., increasing the pulse-to-pulse laser energy repeatability) from a pulsed laser source are provided. In this manner, laser pulses impingent on a processing plane, such as the surface of a wafer or other substrate, may have substantially the same energy content leading to a more controlled process when compared to conventional processing. The method may be based on in-situ detection of the pulse energy level and the subsequent active adjustment of the transmitted laser pulse energy in a closed-loop control scheme. Furthermore, the active adjustment of the laser pulse energy may occur within a few nanoseconds after the original laser pulse is generated by a pulsed laser source.
    Type: Application
    Filed: August 15, 2007
    Publication date: February 19, 2009
    Inventors: JIPING LI, Timothy N. Thomas, Dean Jennings, Bruce E. Adams, Aaron Muir Hunter
  • Publication number: 20090034071
    Abstract: A method and apparatus for decorrelating coherent light from a light source, such as a pulsed laser, in both time and space in an effort to provide intense and uniform illumination are provided. For some embodiments employing a pulsed light source, the output pulse may be stretched relative to the input pulse width. The methods and apparatus described herein may be incorporated into any application where intense, uniform illumination is desired, such as pulsed laser annealing, welding, ablating, and wafer stepper illuminating.
    Type: Application
    Filed: July 31, 2007
    Publication date: February 5, 2009
    Inventors: DEAN JENNINGS, Timothy N. Thomas, Stephen Moffatt, Jiping Li, Bruce E. Adams, Samuel C. Howells
  • Publication number: 20090032511
    Abstract: The present invention generally relates to an optical system that is able to reliably deliver a uniform amount of energy across an anneal region contained on a surface of a substrate. The optical system is adapted to deliver, or project, a uniform amount of energy having a desired two-dimensional shape on a desired region on the surface of the substrate. Typically, the anneal regions may be square or rectangular in shape. Generally, the optical system and methods of the present invention are used to preferentially anneal one or more regions found within the anneal regions by delivering enough energy to cause the one or more regions to re-melt and solidify.
    Type: Application
    Filed: July 31, 2007
    Publication date: February 5, 2009
    Inventors: Bruce E. Adams, Samuel C. Howells, Dean Jennings, Jiping Li, Timothy N. Thomas, Stephen Moffatt
  • Publication number: 20090034072
    Abstract: A method and apparatus for decorrelating coherent light from a light source, such as a pulsed laser, in both time and space in an effort to provide intense and uniform illumination are provided. The techniques and apparatus described herein may be incorporated into any application where intense, uniform illumination is desired, such as pulsed laser annealing, welding, ablating, and wafer stepper illuminating.
    Type: Application
    Filed: July 31, 2007
    Publication date: February 5, 2009
    Inventors: Dean Jennings, Timothy N. Thomas, Stephen Moffatt, Jiping Li, Bruce E. Adams, Samuel C. Howells
  • Patent number: 7438468
    Abstract: A thermal processing system includes a source of laser radiation emitting at a laser wavelength, beam projection optics disposed between the reflective surface and a substrate support capable of holding a substrate to be processed, a pyrometer responsive to a pyrometer wavelength, and a wavelength responsive optical element having a first optical path for light in a first wavelength range including the laser wavelength, the first optical path being between the source of laser radiation and the beam projection optics, and a second optical path for light in a second wavelength range including the pyrometer wavelength, the second optical path being between the beam projection optics and the pyrometer. The system can further include a pyrometer wavelength blocking filter between the source of laser radiation and the wavelength responsive optical element.
    Type: Grant
    Filed: August 2, 2005
    Date of Patent: October 21, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Bruce E. Adams, Dean Jennings, Aaron M. Hunter, Abhilash J. Mayur, Vijay Parihar, Timothy N. Thomas
  • Patent number: 7429532
    Abstract: A method of processing a thin film structure on a semiconductor substrate using an optically writable mask, the method includes placing the substrate in a reactor chamber, the substrate having on its surface a target layer to be exposed to a light source in accordance with a predetermined pattern, depositing an optically writable carbon-containing mask layer on the substrate by (a) introducing a carbon-containing process gas into the chamber, (b) generating a reentrant toroidal RF plasma current in a reentrant path that includes a process zone overlying the workpiece by coupling plasma RF source power to an external portion of the reentrant path, (c) coupling RF plasma bias power or bias voltage to the workpiece.
    Type: Grant
    Filed: August 8, 2005
    Date of Patent: September 30, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Kartik Ramaswamy, Hiroji Hanawa, Biagio Gallo, Kenneth S. Collins, Kai Ma, Vijay Parihar, Dean Jennings, Abhilash J. Mayur, Amir Al-Bayati, Andrew Nguyen