Patents by Inventor Dean Lawrence Cook

Dean Lawrence Cook has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8699626
    Abstract: A general purpose hybrid includes a first input port in communication with a first dual vector generator, a second input port in communication with a second dual vector generator, a first active combiner receives a first signal from the first dual vector generator and a third signal from the second dual vector generator, where the first and second dual vector generators independently apply phase shifting and amplitude control to the first and third signals; a second active combiner receives a second signal from the first dual vector generator and a fourth signal from the second dual vector generator, where the first and second dual vector generators independently apply phase shifting and amplitude control to the second and fourth signals; a first output port provides a first composite signal from the first active combiner; and a second output port provides a second composite signal from the second active combiner.
    Type: Grant
    Filed: November 29, 2011
    Date of Patent: April 15, 2014
    Assignee: Viasat, Inc.
    Inventors: David R. Saunders, David W. Corman, Kenneth V. Buer, Dean Lawrence Cook
  • Publication number: 20130136209
    Abstract: A general purpose hybrid includes a first input port in communication with a first dual vector generator, a second input port in communication with a second dual vector generator, a first active combiner receives a first signal from the first dual vector generator and a third signal from the second dual vector generator, where the first and second dual vector generators independently apply phase shifting and amplitude control to the first and third signals; a second active combiner receives a second signal from the first dual vector generator and a fourth signal from the second dual vector generator, where the first and second dual vector generators independently apply phase shifting and amplitude control to the second and fourth signals; a first output port provides a first composite signal from the first active combiner; and a second output port provides a second composite signal from the second active combiner.
    Type: Application
    Filed: November 29, 2011
    Publication date: May 30, 2013
    Applicant: VIASAT, INC.
    Inventors: David R. Saunders, David W. Corman, Kenneth V. Buer, Dean Lawrence Cook
  • Patent number: 8384498
    Abstract: In an exemplary embodiment, a spurline filter comprises a capacitive element connected to a spur and either a through-line of the spurline filter or ground. In another embodiment, multiple capacitive elements are connected to the spur. In an exemplary embodiment, the capacitively loaded spurline filter provides a band rejection frequency response similar to the band rejection frequency response of a similar spurline filter that does not comprise at least one capacitive element but the capacitively loaded spurline filter has half the layout area or less. In an exemplary embodiment, the spurline filter comprises capacitive elements, where the capacitive elements are configured to reduce the resonant frequency of the filter.
    Type: Grant
    Filed: November 6, 2009
    Date of Patent: February 26, 2013
    Assignee: ViaSat, Inc.
    Inventors: Christopher D. Grondahl, Michael R. Lyons, Dean Lawrence Cook
  • Patent number: 8279009
    Abstract: Doherty and distributed amplifier (DA) designs are combined to achieve, wideband amplifiers with high efficiency dynamic range. A modified Doherty amplifier includes a wideband phase shifter providing first and second outputs, a main amplifier coupled to the first output, an auxiliary amplifier coupled to the second output, and a wideband combining network combining the outputs in phase. A multi-stage DA has a main output and a termination port, and a phase delay module and transforming network allowing power at the termination port to be combined in phase with power at the main output. In one combination, one or more stages of the DA may comprise a Doherty amplifier. In another combination, a modified series-type Doherty amplifying system is achieved by cascading main and auxiliary DAs. In any combination, Doherty topology may include a bias control module.
    Type: Grant
    Filed: April 13, 2012
    Date of Patent: October 2, 2012
    Assignee: ViaSat, Inc.
    Inventors: Christopher D. Grondahl, Dean Lawrence Cook
  • Publication number: 20120194275
    Abstract: Doherty and distributed amplifier (DA) designs are combined to achieve, wideband amplifiers with high efficiency dynamic range. A modified Doherty amplifier includes a wideband phase shifter providing first and second outputs, a main amplifier coupled to the first output, an auxiliary amplifier coupled to the second output, and a wideband combining network combining the outputs in phase. A multi-stage DA has a main output and a termination port, and a phase delay module and transforming network allowing power at the termination port to be combined in phase with power at the main output. In one combination, one or more stages of the DA may comprise a Doherty amplifier. In another combination, a modified series-type Doherty amplifying system is achieved by cascading main and auxiliary DAs. In any combination, Doherty topology may include a bias control module.
    Type: Application
    Filed: April 13, 2012
    Publication date: August 2, 2012
    Applicant: VIASAT, INC.
    Inventors: Christopher D. Grondahl, Dean Lawrence Cook
  • Patent number: 8169264
    Abstract: Doherty and distributed amplifier (DA) designs are combined to achieve, wideband amplifiers with high efficiency dynamic range. A modified Doherty amplifier includes a wideband phase shifter providing first and second outputs, a main amplifier coupled to the first output, an auxiliary amplifier coupled to the second output, and a wideband combining network combining the outputs in phase. A multi-stage DA has a main output and a termination port, and a phase delay module and transforming network allowing power at the termination port to be combined in phase with power at the main output. In one combination, one or more stages of the DA may comprise a Doherty amplifier. In another combination, a modified series-type Doherty amplifying system is achieved by cascading main and auxiliary DAs. In any combination, Doherty topology may include a bias control module.
    Type: Grant
    Filed: August 2, 2011
    Date of Patent: May 1, 2012
    Assignee: ViaSat, Inc.
    Inventors: Christopher D. Grondahl, Dean Lawrence Cook
  • Patent number: 8116358
    Abstract: A frequency plan is provided for particular use in a transceiver. Advantageously, a single oscillator may be used to generate desired frequency signals. One or more power splitters receive the signal and equally divide the signal into first and second signals having a frequency substantially equal to the original. Multipliers on each arm of the transceiver receive a signal and increase the frequency of the signal. In one exemplary embodiment, multiple signals having different frequencies may be transmitted over the same cable due in part to the generated frequency separation between the signals. In another exemplary embodiment, multiple signals may be transmitted over multiple cables. In another exemplary embodiment, the frequency plan may self correct a transmit signal based on a reference signal, such as the receive signal. Additionally, multiple signals over one or more cables may be transmitted at or below 3 GHz.
    Type: Grant
    Filed: November 6, 2009
    Date of Patent: February 14, 2012
    Assignee: ViaSat, Inc.
    Inventors: Dean Lawrence Cook, Kenneth V. Buer
  • Patent number: 8116359
    Abstract: A frequency plan is provided for particular use in a transceiver. Advantageously, a single oscillator may be used to generate desired frequency signals. One or more power splitters receive the signal and equally divide the signal into first and second signals having a frequency substantially equal to the original. Multipliers on each arm of the transceiver receive a signal and increase the frequency of the signal. In one exemplary embodiment, multiple signals having different frequencies may be transmitted over the same cable due in part to the generated frequency separation between the signals. In another exemplary embodiment, multiple signals may be transmitted over multiple cables. Additionally, multiple signals over one or more cables may be transmitted at or below 3 GHz.
    Type: Grant
    Filed: December 6, 2010
    Date of Patent: February 14, 2012
    Assignee: ViaSat, Inc.
    Inventors: Dean Lawrence Cook, Kenneth V. Buer
  • Publication number: 20110285467
    Abstract: Doherty and distributed amplifier (DA) designs are combined to achieve, wideband amplifiers with high efficiency dynamic range. A modified Doherty amplifier includes a wideband phase shifter providing first and second outputs, a main amplifier coupled to the first output, an auxiliary amplifier coupled to the second output, and a wideband combining network combining the outputs in phase. A multi-stage DA has a main output and a termination port, and a phase delay module and transforming network allowing power at the termination port to be combined in phase with power at the main output. In one combination, one or more stages of the DA may comprise a Doherty amplifier. In another combination, a modified series-type Doherty amplifying system is achieved by cascading main and auxiliary DAs. In any combination, Doherty topology may include a bias control module.
    Type: Application
    Filed: August 2, 2011
    Publication date: November 24, 2011
    Applicant: VIASAT, INC.
    Inventors: Christopher D. Grondahl, Dean Lawrence Cook
  • Publication number: 20110250861
    Abstract: A system and method for high frequency, high power operation communication systems is provided. More particularly, a system and method for a single system-on-chip system monolithic microwave integrated circuit that provides both high-frequency performance at a low cost is provided.
    Type: Application
    Filed: April 8, 2010
    Publication date: October 13, 2011
    Applicant: VIASAT, INC.
    Inventors: Michael R. Lyons, Kenneth V. Buer, Dean Lawrence Cook, Christopher D. Grondahl
  • Patent number: 8013680
    Abstract: Doherty and distributed amplifier (DA) designs are combined to achieve, wideband amplifiers with high efficiency dynamic range. A modified Doherty amplifier includes a wideband phase shifter providing first and second outputs, a main amplifier coupled to the first output, an auxiliary amplifier coupled to the second output, and a wideband combining network combining the outputs in phase. A multi-stage DA has a main output and a termination port, and a phase delay module and transforming network allowing power at the termination port to be combined in phase with power at the main output. In one combination, one or more stages of the DA may comprise a Doherty amplifier. In another combination, a modified series-type Doherty amplifying system is achieved by cascading main and auxiliary DAs. In any combination, Doherty topology may include a bias control module.
    Type: Grant
    Filed: November 5, 2008
    Date of Patent: September 6, 2011
    Assignee: ViaSat, Inc.
    Inventors: Christopher D. Grondahl, Dean Lawrence Cook
  • Publication number: 20110075714
    Abstract: A frequency plan is provided for particular use in a transceiver. Advantageously, a single oscillator may be used to generate desired frequency signals. One or more power splitters receive the signal and equally divide the signal into first and second signals having a frequency substantially equal to the original. Multipliers on each arm of the transceiver receive a signal and increase the frequency of the signal. In one exemplary embodiment, multiple signals having different frequencies may be transmitted over the same cable due in part to the generated frequency separation between the signals. In another exemplary embodiment, multiple signals may be transmitted over multiple cables. Additionally, multiple signals over one or more cables may be transmitted at or below 3 GHz.
    Type: Application
    Filed: December 6, 2010
    Publication date: March 31, 2011
    Applicant: VIASAT, INC.
    Inventors: Dean Lawrence Cook, Kenneth V. Buer
  • Patent number: 7848395
    Abstract: A frequency plan is provided for particular use in a transceiver. Advantageously, a single oscillator may be used to generate desired frequency signals. One or more power splitters receive the signal and equally divide the signal into first and second signals having a frequency substantially equal to the original. Multipliers on each arm of the transceiver receive a signal and increase the frequency of the signal. In one exemplary embodiment, multiple signals having different frequencies may be transmitted over the same cable due in part to the generated frequency separation between the signals. In another exemplary embodiment, multiple signals may be transmitted over multiple cables. Additionally, multiple signals over one or more cables may be transmitted at or below 3 GHz.
    Type: Grant
    Filed: August 18, 2006
    Date of Patent: December 7, 2010
    Assignee: ViaSat, Inc.
    Inventors: Dean Lawrence Cook, Kenneth V. Buer
  • Publication number: 20100117766
    Abstract: In an exemplary embodiment, a spurline filter comprises a capacitive element connected to a spur and either a through-line of the spurline filter or ground. In another embodiment, multiple capacitive elements are connected to the spur. In an exemplary embodiment, the capacitively loaded spurline filter provides a band rejection frequency response similar to the band rejection frequency response of a similar spurline filter that does not comprise at least one capacitive element but the capacitively loaded spurline filter has half the layout area or less. In an exemplary embodiment, the spurline filter comprises capacitive elements, where the capacitive elements are configured to reduce the resonant frequency of the filter.
    Type: Application
    Filed: November 6, 2009
    Publication date: May 13, 2010
    Applicant: VIASAT, INC.
    Inventors: Christopher D. Grondahl, Michael R. Lyons, Dean Lawrence Cook
  • Publication number: 20100112961
    Abstract: A frequency plan is provided for particular use in a transceiver. Advantageously, a single oscillator may be used to generate desired frequency signals. One or more power splitters receive the signal and equally divide the signal into first and second signals having a frequency substantially equal to the original. Multipliers on each arm of the transceiver receive a signal and increase the frequency of the signal. In one exemplary embodiment, multiple signals having different frequencies may be transmitted over the same cable due in part to the generated frequency separation between the signals. In another exemplary embodiment, multiple signals may be transmitted over multiple cables. In another exemplary embodiment, the frequency plan may self correct a transmit signal based on a reference signal, such as the receive signal. Additionally, multiple signals over one or more cables may be transmitted at or below 3 GHz.
    Type: Application
    Filed: November 6, 2009
    Publication date: May 6, 2010
    Inventors: Dean Lawrence Cook, Kenneth V. Buer
  • Publication number: 20090115512
    Abstract: Doherty and distributed amplifier (DA) designs are combined to achieve, wideband amplifiers with high efficiency dynamic range. A modified Doherty amplifier includes a wideband phase shifter providing first and second outputs, a main amplifier coupled to the first output, an auxiliary amplifier coupled to the second output, and a wideband combining network combining the outputs in phase. A multi-stage DA has a main output and a termination port, and a phase delay module and transforming network allowing power at the termination port to be combined in phase with power at the main output. In one combination, one or more stages of the DA may comprise a Doherty amplifier. In another combination, a modified series-type Doherty amplifying system is achieved by cascading main and auxiliary DAs. In any combination, Doherty topology may include a bias control module.
    Type: Application
    Filed: November 5, 2008
    Publication date: May 7, 2009
    Inventors: Christopher D. Grondahl, Dean Lawrence Cook
  • Patent number: 7272170
    Abstract: A frequency plan is provided for particular use in a transceiver. Advantageously, a single oscillator may be used to generate desired frequency signal. One or more power splitters receive the signal and equally divide the signal into first and second signals having a frequency substantially equal to the original. Multipliers on each arm of the transceiver receive a signal and increase the frequency of the signal. Ultimately, multiple signals having different frequencies may be transmitted over the same cable due in part to the generated frequency separation between the signals. In one particular aspect, the frequency plan provides a two-thirds relationship between the frequencies of the multiple signals.
    Type: Grant
    Filed: February 6, 2006
    Date of Patent: September 18, 2007
    Assignee: U.S. Monolithics, L.L.C.
    Inventor: Dean Lawrence Cook
  • Patent number: 7116706
    Abstract: A frequency plan is provided for particular use in a transceiver. Advantageously, a single oscillator may be used to generate desired frequency signals. One or more power splitters receive the signal and equally divide the signal into first and second signals having a frequency substantially equal to the original. Multipliers on each arm of the transceiver receive a signal and increase the frequency of the signal. In one exemplary embodiment, multiple signals having different frequencies may be transmitted over the same cable due in part to the generated frequency separation between the signals. In another exemplary embodiment, multiple signals may be transmitted over multiple cables. Additionally, multiple signals over one or more cables may be transmitted at or below 3 GHz.
    Type: Grant
    Filed: September 3, 2002
    Date of Patent: October 3, 2006
    Assignee: U.S. Monolithics, L.L.C.
    Inventors: Dean Lawrence Cook, Kenneth V. Buer
  • Patent number: 6996165
    Abstract: A frequency plan is provided for particular use in a transceiver. Advantageously, a single oscillator may be used to generate desired frequency signal. One or more power splitters receive the signal and equally divide the signal into first and second signals having a frequency substantially equal to the original. Multipliers on each arm of the transceiver receive a signal and increase the frequency of the signal. Ultimately, multiple signals having different frequencies may be transmitted over the same cable due in part to the generated frequency separation between the signals. In one particular aspect, the frequency plan provides a two-thirds relationship between the frequencies of the multiple signals.
    Type: Grant
    Filed: January 28, 2002
    Date of Patent: February 7, 2006
    Assignee: U.S. Monolithics, L.L.C.
    Inventor: Dean Lawrence Cook
  • Publication number: 20030007550
    Abstract: A frequency plan is provided for particular use in a transceiver. Advantageously, a single oscillator may be used to generate desired frequency signals. One or more power splitters receive the signal and equally divide the signal into first and second signals having a frequency substantially equal to the original. Multipliers on each arm of the transceiver receive a signal and increase the frequency of the signal. In one exemplary embodiment, multiple signals having different frequencies may be transmitted over the same cable due in part to the generated frequency separation between the signals. In another exemplary embodiment, multiple signals may be transmitted over multiple cables. Additionally, multiple signals over one or more cables may be transmitted at or below 3 GHz.
    Type: Application
    Filed: September 3, 2002
    Publication date: January 9, 2003
    Inventors: Dean Lawrence Cook, Kenneth V. Buer