Patents by Inventor Dean M. Pichon

Dean M. Pichon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7044937
    Abstract: A modular system is described for construction of fluid applicators for open or endoscopic surgery from modular components. Lengths of tubing of various lengths, and devices to be carried by said tubing, are pre-fitted with standard adapters to mate with each other, thereby forming cannula sections and applicator sections. Interconnectors may also be provided, particularly for provision of articulation. The tubing is preferably rigid, but may also be either flexible or permanently bendable. A device can then be constructed by selection of a suitable set of tubing lengths, adapters and applicators. Devices customizable for particular uses can be created with minimal expense. The system is especially suitable for delivery of fluids to tissue in endoscopic or other minimally invasive surgical procedures. Delivery of fluids forming structure at a tissue site, especially as a hydrogel, is a preferred use of the devices.
    Type: Grant
    Filed: July 27, 1999
    Date of Patent: May 16, 2006
    Assignee: Genzyme Corporation
    Inventors: John M. Kirwan, Dean M. Pichon, J. Jeffrey Kablik, Stephen J. Herman, Thomas S. Bromander
  • Patent number: 6936005
    Abstract: This invention describes novel methods and devices for stabilizing and retracting tissue during surgery, in particular internal tissue. Patches of material, preferably biodegradable, are adhered to tissue surfaces. By manipulation of the patches, for example directly with forceps, or via sutures attached to the patches, tissues can be retracted or otherwise manipulated with minimal trauma to the tissues. The method is especially useful in minimally-invasive surgery.
    Type: Grant
    Filed: April 3, 2002
    Date of Patent: August 30, 2005
    Assignee: Focal, Inc.
    Inventors: Bradley C. Poff, Stephen J. Herman, Dean M. Pichon, Amarpreet S. Sawhney
  • Patent number: 6860870
    Abstract: A gas powered spraying device that can be used for single or multi-part reactive medical polymer compositions is provided. A fluid or one or more reactive solutions are sprayed independently at a tissue surface, and the spraying of each solution of multi-component embodiments is controlled by a separate valve. Each solution is provided with a separate spray outlet, and each spray outlet is surrounded by an annular sheath of flowing gas. Gas flow is provided at two or more flow levels, including a high level flow for active spraying and a low level bypass flow to remove drips and prevent clogging, which can improve device reliability. Gas pressure can be used to drive fluid to its spray outlet, as well as to spray the fluid from the outlet to the tissue surface.
    Type: Grant
    Filed: December 21, 2001
    Date of Patent: March 1, 2005
    Assignee: Focal, Inc.
    Inventors: Dean M. Pichon, David J. Nedder, John R. Sousa, J. Jeffrey Kablik, Albert H. Linder
  • Patent number: 6586751
    Abstract: A device for testing the light power output of an optical system comprises a thermochromic element, a body element optionally providing collimation or other means of reproducible positioning, and optionally filters and attenuation. A preferred device fits onto the end of an optical power delivery system, and the thermochromic element changes color if the system output is above a defined threshold. An alternative device provides a flat target with a The device may be adapted to be sterilizable, and may be disposable. Optional means for ensuring that the light delivery system is operational during the measurement are provided.
    Type: Grant
    Filed: April 30, 1999
    Date of Patent: July 1, 2003
    Assignee: Focal, Inc.
    Inventors: Dean M. Pichon, Michael G. Dumont, J. Jeffrey Kablik
  • Patent number: 6545594
    Abstract: A closure for a bottle. The closure includes an outer cap. An audio device and a triggering mechanism are positioned within the outer cap. A water block is positioned on the outer cap so as to prevent water from penetrating into the audio device.
    Type: Grant
    Filed: May 25, 2000
    Date of Patent: April 8, 2003
    Assignee: The Coca-Cola Company
    Inventors: John D. Knight, Joseph M. Ladina, George E. Selecman, Thomas P. Hambleton, Douglas J. Ely, Daniela Homza-Stark, Dean M. Pichon, David Nedder
  • Publication number: 20020198564
    Abstract: A gas powered spraying device that can be used for single or multi-part reactive medical polymer compositions is provided. A fluid or one or more reactive solutions are sprayed independently at a tissue surface, and the spraying of each solution of multi-component embodiments is controlled by a separate valve. Each solution is provided with a separate spray outlet, and each spray outlet is surrounded by an annular sheath of flowing gas. Gas flow is provided at two or more flow levels, including a high level flow for active spraying and a low level bypass flow to remove drips and prevent clogging, which can improve device reliability. Gas pressure can be used to drive fluid to its spray outlet, as well as to spray the fluid from the outlet to the tissue surface.
    Type: Application
    Filed: December 21, 2001
    Publication date: December 26, 2002
    Inventors: Dean M. Pichon, David J. Nedder, John R. Sousa, J. Jeffrey Kablik, Albert H. Linder
  • Publication number: 20020147386
    Abstract: This invention describes novel methods and devices for stabilizing and retracting tissue during surgery, in particular internal tissue. Patches of material, preferably biodegradable, are adhered to tissue surfaces. By manipulation of the patches, for example directly with forceps, or via sutures attached to the patches, tissues can be retracted or otherwise manipulated with minimal trauma to the tissues. The method is especially useful in minimally-invasive surgery.
    Type: Application
    Filed: April 3, 2002
    Publication date: October 10, 2002
    Inventors: Bradley C. Poff, Stephen J. Herman, Dean M. Pichon, Amarpreet Sawhney
  • Patent number: 6387977
    Abstract: An impoved barrier or drug delivery system which is highly adherent to the surface to which it is applied is disclosed, along with methods for making the barrier. In the preferred embodiment, tissue is stained with a photoinitiator, then the polymer solution or gel having added thereto a defined amount of the same or a different photoinitiator is applied to the tissue. On exposure to light, the resulting system polymerizes at the surface, giving excellent adherence, and also forms a gel in the rest of the applied volume. Thus a gel barrier of arbitrary thickness can be applied to a surface while maintaining high adherence at the interface. This process is referred to herein as “priming”. The polymerizable barrier materials are highly useful for sealing tissue surfaces and junctions against leaks of fluids. In another embodiment, “priming” can be used to reliably adhere preformed barriers to tissue or other surfaces, or to adhere tissue surfaces to each other.
    Type: Grant
    Filed: July 14, 2000
    Date of Patent: May 14, 2002
    Assignees: Focal, Inc., Board of Regents, The University of Texas System
    Inventors: Amarpreet S. Sawhney, David A. Melanson, Chandrashekar P. Pathak, Jeffrey A. Hubbell, Luis Z. Avila, Mark T. Kieras, Stephen D. Goodrich, Shikha P. Barman, Arthur J. Coury, Ronald S. Rudowsky, Douglas J. K. Weaver, Marc A. Levine, John C. Spiridigliozzi, Thomas S. Bromander, Dean M. Pichon, George Selecman, David J. Nedder, Bradley C. Poff, Donald L. Elbert
  • Patent number: 6123667
    Abstract: This invention describes methods and devices for stabilizing and retracting tissue during surgery, in particular internal tissue. Patches of material, preferably biodegradable, are adhered to tissue surfaces. By manipulation of the patches, for example directly with forceps, or via sutures attached to the patches, tissues can be retracted or otherwise manipulated with minimal trauma to the tissues. The method is especially useful in minimally-invasive surgery.
    Type: Grant
    Filed: March 20, 1998
    Date of Patent: September 26, 2000
    Assignee: Focal, Inc.
    Inventors: Bradley C. Poff, Stephen J. Herman, Dean M. Pichon, Amarpreet S. Sawhney
  • Patent number: 6121341
    Abstract: An impoved barrier or drug delivery system which is highly adherent to the surface to which it is applied is disclosed, along with methods for making the barrier. In the preferred embodiment, tissue is stained with a photoinitiator, then the polymer solution or gel having added thereto a defined amount of the same or a different photoinitiator is applied to the tissue. On exposure to light, the resulting system polymerizes at the surface, giving excellent adherence, and also forms a gel in the rest of the applied volume. Thus a gel barrier of arbitrary thickness can be applied to a surface while maintaining high adherence at the interface. This process is referred to herein as "priming". the polymerizable barrier materials are highly useful for sealing tissue surfaces and junctions against leaks of fluids. In another embodiment, "priming" can be used to reliably adhere preformed barriers to tissue or other surfaces, or to adhere tissue surfaces to each other.
    Type: Grant
    Filed: October 10, 1997
    Date of Patent: September 19, 2000
    Assignees: Board of Regents, The University of Texas System, Focal, Inc.
    Inventors: Amarpreet S. Sawhney, David A. Melanson, Chandrashekar P. Pathak, Jeffrey A. Hubbell, Luis Z. Avila, Mark T. Kieras, Stephen D. Goodrich, Shikha P. Barman, Arthur J. Coury, Ronald S. Rudowsky, Douglas J. K. Weaver, Marc A. Levine, John C. Spiridigliozzi, Thomas S. Bromander, Dean M. Pichon, George Selecman, David J. Nedder, Bradley C. Poff, Donald L. Elbert
  • Patent number: 5749968
    Abstract: An improved barrier or drug delivery system which is highly adherent to the surface to which it is applied is disclosed, along with methods for making the barrier. In the preferred embodiment, tissue is stained with a photoinitiator, then the polymer solution or gel having added thereto a defined amount of the same or a different photoinitator is applied to the tissue. On exposure to light, the resulting system polymerizes at the surface, giving excellent adherence, and also forms a gel in the rest of the applied volume. Thus a gel barrier of arbitrary thickness can be applied to a surface while maintaining high adherence at the interface. This process is referred to herein as "priming". The polymerizable barrier materials are highly useful for sealing tissue surfaces and junctions against leaks of fluids. In another embodiment, "priming" can be used to reliably adhere preformed barriers to tissue or other surfaces, or to adhere tissue surfaces to each other.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: May 12, 1998
    Assignee: Focal, Inc.
    Inventors: David A. Melanson, Marc Alan Levine, John C. Spiridigliozzi, Thomas S. Bromander, Dean M. Pichon, George Selecman, David J. Nedder