Patents by Inventor Dean Neikirk

Dean Neikirk has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8105849
    Abstract: Described herein is an analyte detection device and method related to a portable instrument suitable for point-of-care analyses. In some embodiments, a portable instrument may include a disposable cartridge, an optical detector, a sample collection device and/or sample reservoir, reagent delivery systems, fluid delivery systems, one or more channels, and/or waste reservoirs. Use of a portable instrument may reduce the hazard to an operator by reducing an operator's contact with a sample for analysis. The device is capable of obtaining diagnostic information using cellular- and/or particle-based analyses and may be used in conjunction with membrane- and/or particle-based analysis cartridges. Analytes, including proteins and cells and/or microbes may be detected using the membrane and/or particle based analysis system.
    Type: Grant
    Filed: December 22, 2004
    Date of Patent: January 31, 2012
    Assignee: Board of Regents, The University of Texas System
    Inventors: John T. McDevitt, Karri L. Ballard, Pierre N. Floriano, Nick J. Christodoulides, Dean Neikirk, Eric Anslyn, Jason Shear
  • Patent number: 8101431
    Abstract: Described herein is an analyte detection device and method related to a portable instrument suitable for point-of-care analyses. In some embodiments, a portable instrument may include a disposable cartridge, an optical detector, a sample collection device and/or sample reservoir, reagent delivery systems, fluid delivery systems, one or more channels, and/or waste reservoirs. Use of a portable instrument may reduce the hazard to an operator by reducing an operator's contact with a sample for analysis. The device is capable of obtaining diagnostic information using cellular- and/or particle-based analyses and may be used in conjunction with membrane- and/or particle-based analysis cartridges. Analytes, including proteins and cells and/or microbes may be detected using the membrane and/or particle based analysis system.
    Type: Grant
    Filed: December 22, 2004
    Date of Patent: January 24, 2012
    Assignee: Board of Regents, The University of Texas System
    Inventors: John T. McDevitt, Karri L. Ballard, Pierre N. Floriano, Nick J. Christodoulides, Dean Neikirk, Eric Anslyn, Jason Shear
  • Publication number: 20060257941
    Abstract: Described herein is an analyte detection device and method related to a portable instrument suitable for point-of-care analyses. In some embodiments, a portable instrument may include a disposable cartridge, an optical detector, a sample collection device and/or sample reservoir, reagent delivery systems, fluid delivery systems, one or more channels, and/or waste reservoirs. Use of a portable instrument may reduce the hazard to an operator by reducing an operator's contact with a sample for analysis. The device is capable of obtaining diagnostic information using cellular- and/or particle-based analyses and may be used in conjunction with membrane- and/or particle-based analysis cartridges. Analytes, including proteins and cells and/or microbes may be detected using the membrane and/or particle based analysis system.
    Type: Application
    Filed: December 22, 2004
    Publication date: November 16, 2006
    Inventors: John McDevitt, Karri Ballard, Pierre Floriano, Nick Christodoulides, Dean Neikirk, Eric Anslyn, Jason Shear
  • Publication number: 20060257993
    Abstract: Described herein is an analyte detection device and method related to a portable instrument suitable for point-of-care analyses. In some embodiments, a portable instrument may include a disposable cartridge, an optical detector, a sample collection device and/or sample reservoir, reagent delivery systems, fluid delivery systems, one or more channels, and/or waste reservoirs. Use of a portable instrument may reduce the hazard to an operator by reducing an operator's contact with a sample for analysis. The device is capable of obtaining diagnostic information using cellular- and/or particle-based analyses and may be used in conjunction with membrane- and/or particle-based analysis cartridges. Analytes, including proteins and cells and/or microbes may be detected using the membrane and/or particle based analysis system.
    Type: Application
    Filed: December 22, 2004
    Publication date: November 16, 2006
    Inventors: John McDevitt, Karri Ballard, Pierre Floriano, Nick Christodoulides, Dean Neikirk, Eric Anslyn, Jason Shear
  • Publication number: 20060257992
    Abstract: Described herein is an analyte detection device and method related to a portable instrument suitable for point-of-care analyses. In some embodiments, a portable instrument may include a disposable cartridge, an optical detector, a sample collection device and/or sample reservoir, reagent delivery systems, fluid delivery systems, one or more channels, and/or waste reservoirs. Use of a portable instrument may reduce the hazard to an operator by reducing an operator's contact with a sample for analysis. The device is capable of obtaining diagnostic information using cellular- and/or particle-based analyses and may be used in conjunction with membrane- and/or particle-based analysis cartridges. Analytes, including proteins and cells and/or microbes may be detected using the membrane and/or particle based analysis system.
    Type: Application
    Filed: December 22, 2004
    Publication date: November 16, 2006
    Inventors: John McDevitt, Karri Ballard, Pierre Floriano, Nick Christodoulides, Dean Neikirk, Eric Anslyn, Jason Shear
  • Publication number: 20060257991
    Abstract: Described herein is an analyte detection device and method related to a portable instrument suitable for point-of-care analyses. In some embodiments, a portable instrument may include a disposable cartridge, an optical detector, a sample collection device and/or sample reservoir, reagent delivery systems, fluid delivery systems, one or more channels, and/or waste reservoirs. Use of a portable instrument may reduce the hazard to an operator by reducing an operator's contact with a sample for analysis. The device is capable of obtaining diagnostic information using cellular- and/or particle-based analyses and may be used in conjunction with membrane- and/or particle-based analysis cartridges. Analytes, including proteins and cells and/or microbes may be detected using the membrane and/or particle based analysis system.
    Type: Application
    Filed: December 22, 2004
    Publication date: November 16, 2006
    Inventors: John McDevitt, Karri Ballard, Pierre Floriano, Nick Christodoulides, Dean Neikirk, Eric Anslyn, Jason Shear
  • Publication number: 20060228256
    Abstract: The development of miniaturized chromatographic systems localized within individual polymer microspheres and their incorporation into a bead-based cross-reactive sensor array platform is described herein. The integrated chromatographic and detection concept is based on the creation of distinct functional layers within the microspheres. In this first example of the new methodology, complexing ligands have been selectively immobilized to create “separation” layers harboring an affinity for various analytes. Information concerning the identities and concentrations of analytes may be drawn from the temporal properties of the beads' optical responses. Varying the nature of the ligand in the separation shell yields a collection of cross-reactive sensing elements well suited for use in array-based micro-total-analysis systems.
    Type: Application
    Filed: February 9, 2004
    Publication date: October 12, 2006
    Applicant: Board of Regents, The University of Texas System
    Inventors: John McDevitt, Adrain Goodey, Jason Shear, Eric Anslyn, Dean Neikirk
  • Publication number: 20050214863
    Abstract: A system for the rapid characterization of analytes in saliva. In one embodiment, a system for detecting analytes includes a light source, a sensor array, and a detector. The sensor array is formed from a supporting member, in which a plurality of cavities may be formed. A series of chemically sensitive particles, in one embodiment, are positioned within the cavities. The particles may produce a signal when a receptor, coupled to the particle, interacts with the cardiovascular risk factor analyte and the particle-analyte complex is visualized using a visualization reagent. Using pattern recognition techniques, the analytes within a multi-analyte fluid may be characterized. In an embodiment, each cavity of the plurality of cavities is designed to capture and contain a specific size particle. Flexible projections may be positioned over each of the cavities to provide retention of the particles in the cavities.
    Type: Application
    Filed: December 13, 2004
    Publication date: September 29, 2005
    Inventors: John McDevitt, Eric Anslyn, Jason Shear, Dean Neikirk, Nick Christodoulides
  • Publication number: 20050164320
    Abstract: A system for the rapid characterization of multi-analyte fluids, in one embodiment, includes a light source, a sensor array, and a detector. The sensor array is formed from a supporting member into which a plurality of cavities may be formed. A series of chemically sensitive particles are, in one embodiment positioned within the cavities. The particles may be configured to produce a signal when a receptor coupled to the particle interacts with the analyte. Using pattern recognition techniques, the analytes within a multi-analyte fluid may be characterized.
    Type: Application
    Filed: January 20, 2005
    Publication date: July 28, 2005
    Inventors: John McDevitt, Eric Anslyn, Jason Shear, Dean Neikirk
  • Publication number: 20050136548
    Abstract: A system for the rapid characterization of multi-analyte fluids, in one embodiment, includes a light source, a sensor array, and a detector. The sensor array is formed from a supporting member into which a plurality of cavities may be formed. A series of chemically sensitive particles are, in one embodiment positioned within the cavities. The particles may be configured to produce a signal when a receptor coupled to the particle interacts with the analyte. Using pattern recognition techniques, the analytes within a multi-analyte fluid may be characterized.
    Type: Application
    Filed: August 23, 2004
    Publication date: June 23, 2005
    Inventors: John McDevitt, Eric Anslyn, Jason Shear, Dean Neikirk