Patents by Inventor Dean Pennala

Dean Pennala has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11434841
    Abstract: Methods and systems are provided for a NOx sensor. In one example, a method includes heating a NOx sensor during a vehicle off in response to a cumulative heat energy applied to the NOx.
    Type: Grant
    Filed: December 22, 2020
    Date of Patent: September 6, 2022
    Assignee: Ford Global Technologies, LLC
    Inventors: Frank M Korpics, Brett Gayney, Dean Pennala, William Goodwin, Michiel J. Van Nieuwstadt
  • Publication number: 20220195956
    Abstract: Methods and systems are provided for a NOx sensor. In one example, a method includes heating a NOx sensor during a vehicle off in response to a cumulative heat energy applied to the NOx.
    Type: Application
    Filed: December 22, 2020
    Publication date: June 23, 2022
    Inventors: Frank M Korpics, Brett Gayney, Dean Pennala, William Goodwin, Michiel J. Van Nieuwstadt
  • Patent number: 11326495
    Abstract: Methods and systems for operating an engine that includes a controller and a NOx sensor are described. In one example, output of the NOx sensor is selectively made available to software modules within the controller when an offset in NOx sensor output is not expected. If the offset in NOx sensor output is expected, the NOx sensor output may not be made available to the software modules.
    Type: Grant
    Filed: July 24, 2020
    Date of Patent: May 10, 2022
    Assignee: Ford Global Technologies, LLC
    Inventors: Dean Pennala, Justin Trzeciak, Frank M. Korpics, Jim Bromham
  • Publication number: 20220025806
    Abstract: Methods and systems for operating an engine that includes a controller and a NOx sensor are described. In one example, output of the NOx sensor is selectively made available to software modules within the controller when an offset in NOx sensor output is not expected. If the offset in NOx sensor output is expected, the NOx sensor output may not be made available to the software modules.
    Type: Application
    Filed: July 24, 2020
    Publication date: January 27, 2022
    Inventors: Dean Pennala, Justin Trzeciak, Frank M. Korpics, Jim Bromham
  • Patent number: 9670852
    Abstract: A method for operating a turbocharged engine is disclosed. In one example, during a first condition an engine operation is adjusted in response to a turbocharger expansion ratio exceeding a first limit and during a second condition an engine operation is adjusted in response to the turbocharger expansion ratio exceeding a second limit that differs from the first limit. Degradation of the engine may be reduced under some engine operating conditions by adjusting engine operation in response to the turbocharger expansion ratio.
    Type: Grant
    Filed: January 13, 2015
    Date of Patent: June 6, 2017
    Assignee: Ford Global Technologies, LLC
    Inventors: Brien Lloyd Fulton, Gopal Krishna Chamarthi, Dean Pennala, David Ives, David Robert Nader, Paul Martin Niessen, Jason Ronald Smith
  • Patent number: 9381468
    Abstract: Systems and methods for detecting ammonia slip in an exhaust system based upon transient NOx sensor responses are described. In one example method, an exhaust system allocates tailpipe NOx sensor output to NOx and NH3 levels responsive to the transient sensors using a segment length method that processes the transient signals based on the total segment lengths calculated within a window. A ratio of segment lengths relative to a threshold is determined for a measured and expected NOx rate of change downstream of an SCR that is further used to determine a probability of NOx and NH3 based on the measured sensor activities, and a controller is included to adjust one or more parameters based on the allocation and changes of sensor output.
    Type: Grant
    Filed: April 9, 2014
    Date of Patent: July 5, 2016
    Assignee: Ford Global Technologies, LLC
    Inventors: Frank Korpics, Dean Pennala, Devesh Upadhyay, Hao Wu
  • Patent number: 9297338
    Abstract: The systems and method described above in the present disclosure allow for regeneration of a diesel particulate filter while a vehicle is in stationary power take-off mode. Described is a method of: during select power take-off conditions, reducing an EGR rate responsive to an indication to regenerate a diesel particulate filter.
    Type: Grant
    Filed: May 8, 2013
    Date of Patent: March 29, 2016
    Assignee: Ford Global Technologies, LLC
    Inventors: Jeff Reich, Frank M. Korpics, Dean Pennala, Michiel J. Van Nieuwstadt, David Wynn Philion, James Campbell, Timothy Webb
  • Patent number: 9038611
    Abstract: A method for controlling combustion in an engine is provided. The method comprises under a first condition, adjusting an EGR amount of a total cylinder charge in response to engine out NOx levels being below a first threshold. In this way, NOx levels may be used as feedback to control combustion stability.
    Type: Grant
    Filed: November 14, 2011
    Date of Patent: May 26, 2015
    Assignee: Ford Global Technologies, LLC
    Inventors: Peter Mitchell Lyon, Chris Riffle, Michiel J. Van Nieuwstadt, Frank M. Korpics, Jeff Reich, Dean Pennala
  • Publication number: 20150121865
    Abstract: A method for operating a turbocharged engine is disclosed. In one example, during a first condition an engine operation is adjusted in response to a turbocharger expansion ratio exceeding a first limit and during a second condition an engine operation is adjusted in response to the turbocharger expansion ratio exceeding a second limit that differs from the first limit. Degradation of the engine may be reduced under some engine operating conditions by adjusting engine operation in response to the turbocharger expansion ratio.
    Type: Application
    Filed: January 13, 2015
    Publication date: May 7, 2015
    Inventors: Brien Lloyd Fulton, Gopal Krishna Chamarthi, Dean Pennala, David Ives, David Robert Nader, Paul Martin Niessen, Jason Ronald Smith
  • Patent number: 8931272
    Abstract: A method for operating a turbocharged engine is disclosed. In one example, during a first condition an engine operation is adjusted in response to a turbocharger expansion ratio exceeding a first limit and during a second condition an engine operation is adjusted in response to the turbocharger expansion ratio exceeding a second limit that differs from the first limit. Degradation of the engine may be reduced under some engine operating conditions by adjusting engine operation in response to the turbocharger expansion ratio.
    Type: Grant
    Filed: April 11, 2013
    Date of Patent: January 13, 2015
    Assignee: Ford Global Technologies, LLC
    Inventors: Brien Lloyd Fulton, Gopal Krishna Chamarthi, Dean Pennala, David Ives, David Robert Nader, Paul Martin Niessen, Jason Ronald Smith
  • Publication number: 20140331643
    Abstract: The systems and method described above in the present disclosure allow for regeneration of a diesel particulate filter while a vehicle is in stationary power take-off mode. Described is a method of: during select power take-off conditions, reducing an EGR rate responsive to an indication to regenerate a diesel particulate filter.
    Type: Application
    Filed: May 8, 2013
    Publication date: November 13, 2014
    Applicant: Ford Global Technologies, LLC
    Inventors: Jeff Reich, Frank M. Korpics, Dean Pennala, Michiel J. Van Nieuwstadt, David Wynn Philion, James Campbell, Timothy Webb
  • Publication number: 20140301925
    Abstract: Systems and methods for detecting ammonia slip in an exhaust system based upon transient NOx sensor responses are described. In one example method, an exhaust system allocates tailpipe NOx sensor output to NOx and NH3 levels responsive to the transient sensors using a segment length method that processes the transient signals based on the total segment lengths calculated within a window. A ratio of segment lengths relative to a threshold is determined for a measured and expected NOx rate of change downstream of an SCR that is further used to determine a probability of NOx and NH3 based on the measured sensor activities, and a controller is included to adjust one or more parameters based on the allocation and changes of sensor output.
    Type: Application
    Filed: April 9, 2014
    Publication date: October 9, 2014
    Applicant: Ford Global Technologies, LLC
    Inventors: Frank Korpics, Dean Pennala, Devesh Upadhyay, Hao Wu
  • Patent number: 8596064
    Abstract: A method for operating a turbocharged engine is disclosed. In one example, an engine operation is adjusted in response to a turbocharger expansion ratio. Degradation of the engine may be reduced under some engine operating conditions by adjusting engine operation in response to the turbocharger expansion ratio.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: December 3, 2013
    Assignee: Ford Global Technologies, LLC
    Inventors: Brien Lloyd Fulton, Gopal Krishna Chamarthi, Dean Pennala, David Curtis Ives, David Robert Nader, Paul Martin Niessen, Jason Ronald Smith
  • Publication number: 20130227945
    Abstract: A method for operating a turbocharged engine is disclosed. In one example, during a first condition an engine operation is adjusted in response to a turbocharger expansion ratio exceeding a first limit and during a second condition an engine operation is adjusted in response to the turbocharger expansion ratio exceeding a second limit that differs from the first limit. Degradation of the engine may be reduced under some engine operating conditions by adjusting engine operation in response to the turbocharger expansion ratio.
    Type: Application
    Filed: April 11, 2013
    Publication date: September 5, 2013
    Applicant: Ford Global Technologies, LLC
    Inventors: Brien Lloyd Fulton, Gopal Krishna Chamarthi, Dean Pennala, David Ives, David Robert Nader, Paul Martin Niessen, Jason Ronald Smith
  • Publication number: 20130118461
    Abstract: A method for controlling combustion in an engine is provided. The method comprises under a first condition, adjusting an EGR amount of a total cylinder charge in response to engine out NOx levels being below a first threshold. In this way, NOx levels may be used as feedback to control combustion stability.
    Type: Application
    Filed: November 14, 2011
    Publication date: May 16, 2013
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Peter Mitchell, Chris Riffle, Michiel J. Van Nieuwstadt, Frank M. Korpics, Jeff Reich, Dean Pennala
  • Publication number: 20120102944
    Abstract: A method for operating a turbocharged engine is disclosed. In one example, an engine operation is adjusted in response to a turbocharger expansion ratio. Degradation of the engine may be reduced under some engine operating conditions by adjusting engine operation in response to the turbocharger expansion ratio.
    Type: Application
    Filed: October 29, 2010
    Publication date: May 3, 2012
    Applicant: Ford Global Technologies, LLC
    Inventors: Brien Lloyd Fulton, Gopal Krishna Chamarthi, Dean Pennala, David Curtis Ives, David Robert Nader, Paul Martin Niessen, Jason Ronald Smith
  • Patent number: 6131552
    Abstract: A fuel control system for delivering gaseous fuel from a source through an air/fuel mixture to a gas-operated engine that includes at least one sensor for operative coupling to the engine to provide at least one electronic sensor signal responsive to engine operating conditions. An electronic control unit is responsive to the sensor signal(s) for providing a fuel control signal indicative of a desired quantity of fuel to be delivered to the engine. A pressure regulator, for disposition between the fuel source and the fuel/air mixture, is responsive to the fuel control signal for controlling delivery of gaseous fuel to the mixer. The pressure regulator includes a housing having an inlet for connection to the fuel source and an outlet for connection to the mixer. A valve is disposed within the housing and biased toward closure by a primary pressure regulating spring for controlling flow of fuel from the inlet to the outlet.
    Type: Grant
    Filed: May 10, 1999
    Date of Patent: October 17, 2000
    Assignee: Dana Corporation
    Inventors: Perry M. Paielli, Dean A. Pennala