Patents by Inventor Debaleena Nandi

Debaleena Nandi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230420456
    Abstract: Integrated circuit structures having source or drain structures with low resistivity are described. In an example, integrated circuit structure includes a fin having a lower fin portion and an upper fin portion. A gate stack is over the upper fin portion of the fin, the gate stack having a first side opposite a second side. A first source or drain structure includes an epitaxial structure embedded in the fin at the first side of the gate stack. A second source or drain structure includes an epitaxial structure embedded in the fin at the second side of the gate stack. Each epitaxial structure of the first and second source or drain structures include silicon, germanium, gallium and boron. The first and second source or drain structures have a resistivity less than 2E-9 Ohm cm2.
    Type: Application
    Filed: June 27, 2022
    Publication date: December 28, 2023
    Inventors: Debaleena NANDI, Imola ZIGONEANU, Gilbert DEWEY, Anant H. JAHAGIRDAR, Harold W. KENNEL, Pratik PATEL, Anand S. MURTHY, Chi-Hing CHOI, Mauro J. KOBRINSKY, Tahir GHANI
  • Publication number: 20230193473
    Abstract: The formation of titanium contacts to silicon germanium (SiGe) comprises the formation of a titanium silicide layer in which the silicon for the titanium silicide layer is provided by flowing silane (disilane, trisilane, etc.) over a titanium layer at an elevated temperature. The titanium silicide layer can help limit the amount of titanium and germanium interdiffusion that can occur across the titanium silicide-silicon germanium interface, which can reduce (or eliminate) the formation of voids in the SiGe layer during subsequent anneal and other high-temperature processes. The surface of the SiGe layer upon which the titanium layer is formed can also be preamorphized via boron and germanium implantation to further improve the robustness of the SiGe layer against microvoid development. The resulting titanium contacts are thermally stable in that their resistance remains substantially unchanged after being subjected to downstream annealing and high-temperature processing processes.
    Type: Application
    Filed: December 22, 2021
    Publication date: June 22, 2023
    Applicant: Intel Corporation
    Inventors: Debaleena Nandi, Gilbert Dewey, Tahir Ghani, Nazila Haratipour, Mauro J. Kobrinsky, Anand Murthy
  • Publication number: 20230197817
    Abstract: Gate-all-around integrated circuit structures having confined epitaxial source or drain structures, are described. For example, an integrated circuit structure includes a plurality of nanowires above a sub-fin. A gate stack is over the plurality of nanowires and the sub-fin. Epitaxial source or drain structures are on opposite ends of the plurality of nanowires. The epitaxial source or drain structures comprise i) a first PMOS epitaxial (pEPI) region of germanium and boron, ii) a second pEPI region of silicon, germanium and boron on the first pEPI region at a contact location, iii) titanium silicide conductive contact material on the second pEPI region.
    Type: Application
    Filed: December 21, 2021
    Publication date: June 22, 2023
    Inventors: Debaleena NANDI, Cory BOMBERGER, Diane LANCASTER, Gilbert DEWEY, Sandeep K. PATIL, Mauro J. KOBRINSKY, Anand S. MURTHY, Tahir GHANI
  • Publication number: 20230101725
    Abstract: Gate-all-around integrated circuit structures having confined epitaxial source or drain structures, are described. For example, an integrated circuit structure includes a plurality of nanowires above a sub-fin. A gate stack is over the plurality of nanowires and the sub-fin. Epitaxial source or drain structures are on opposite ends of the plurality of nanowires. The epitaxial source or drain structures comprise germanium and boron, and a protective layer comprises silicon, and germanium that at least partially covers the epitaxial source or drain structures. A conductive contact comprising titanium silicide is on the epitaxial source or drain structures.
    Type: Application
    Filed: September 24, 2021
    Publication date: March 30, 2023
    Inventors: Debaleena NANDI, Mauro J. KOBRINSKY, Gilbert DEWEY, Chi-hing CHOI, Harold W. Kennel, Brian J. KRIST, Ashkar ALIYARUKUNJU, Cory BOMBERGER, Rushabh SHAH, Rishabh MEHANDRU, Stephen M. CEA, Chanaka MUNASINGHE, Anand S. MURTHY, Tahir GHANI
  • Publication number: 20230087399
    Abstract: Gate-all-around integrated circuit structures having confined epitaxial source or drain structures, are described. For example, an integrated circuit structure includes a plurality of nanowires above a sub-fin. A gate stack is over the plurality of nanowires and the sub-fin. Epitaxial source or drain structures are on opposite ends of the plurality of nanowires. The epitaxial source or drain structures comprise i) a first PMOS epitaxial (pEPI) region of germanium and boron, ii) a second pEPI region of silicon, germanium and boron on the first pEPI region at a contact location, iii) a capping layer comprising silicon over the second pEPI region. A conductive contact material comprising titanium is on the capping layer.
    Type: Application
    Filed: September 23, 2021
    Publication date: March 23, 2023
    Inventors: Debaleena NANDI, Cory BOMBERGER, Rushabh SHAH, Gilbert DEWEY, Nazila HARATIPOUR, Mauro J. KOBRINSKY, Anand S. MURTHY, Tahir GHANI
  • Publication number: 20220416032
    Abstract: Source and drain contacts that provide improved contact resistance and contact interface stability for transistors employing silicon and germanium source and drain materials, related transistor structures, integrated circuits, systems, and methods of fabrication are disclosed. Such source and drain contacts include a contact layer of co-deposited titanium and silicon on the silicon and germanium source and drain. The disclosed source and drain contacts improve transistor performance including switching speed and reliability.
    Type: Application
    Filed: June 25, 2021
    Publication date: December 29, 2022
    Applicant: Intel Corporation
    Inventors: Debaleena Nandi, Chi-Hing Choi, Gilbert Dewey, Harold Kennel, Omair Saadat, Jitendra Kumar Jha, Adedapo Oni, Nazila Haratipour, Anand Murthy, Tahir Ghani
  • Publication number: 20220416050
    Abstract: Embodiments disclosed herein include semiconductor devices with improved contact resistances. In an embodiment, a semiconductor device comprises a semiconductor channel, a gate stack over the semiconductor channel, a source region on a first end of the semiconductor channel, a drain region on a second end of the semiconductor channel, and contacts over the source region and the drain region. In an embodiment, the contacts comprise a silicon germanium layer, an interface layer over the silicon germanium layer, and a titanium layer over the interface layer.
    Type: Application
    Filed: June 25, 2021
    Publication date: December 29, 2022
    Inventors: Debaleena NANDI, Cory BOMBERGER, Gilbert DEWEY, Anand S. MURTHY, Mauro KOBRINSKY, Rushabh SHAH, Chi-Hing CHOI, Harold W. KENNEL, Omair SAADAT, Adedapo A. ONI, Nazila HARATIPOUR, Tahir GHANI