Patents by Inventor DEBDEEP CHATTERJEE

DEBDEEP CHATTERJEE has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230224880
    Abstract: Various embodiments herein provide techniques for downlink and uplink resource mapping for full duplex communication, e.g., non-overlapping sub-band-full duplex (NOSB-FD) communication that includes a frequency resource for uplink communication and a frequency resource for downlink communication. Also described are techniques for user equipment (UE) behavior associated with a non-cell defining synchronization signal block (NCD-SSB). Other embodiments may be described and claimed.
    Type: Application
    Filed: March 16, 2023
    Publication date: July 13, 2023
    Inventors: Gang Xiong, Debdeep Chatterjee, Yingyang Li, Yi Wang, Sergey Panteleev, Salvatore Talarico
  • Patent number: 11700672
    Abstract: Systems and methods for PDCCH monitoring in NR systems. The UE provides to a serving cell UE capability information indicating a capability of the UE to monitor PDCCH. The UE capability information indicates a carrier aggregation capability larger than multiple serving cells and has a maximum number indication for a maximum number of PDCCH candidates that the UE can monitor per span. The serving cell transmits an RRC message to a UE in response to the UE capacity information. The RRC message has a per-slot and/or per-span indication to monitor PDCCHs on the serving cell for a maximum number of PDCCH candidates and non-overlapping CCEs. The UE monitors PDCCH candidates and, in the event that a span contains larger than a maximum number of PDCCH candidates or non-overlapping CCEs across multiple served cells, determines whether to monitor a particular PDCCH candidate in the span.
    Type: Grant
    Filed: October 6, 2020
    Date of Patent: July 11, 2023
    Assignee: Intel Corporation
    Inventors: Fatemeh Hamidi-Sepehr, Debdeep Chatterjee, Sergey Panteleev, Toufiqul Islam
  • Publication number: 20230217267
    Abstract: User equipment (UE) includes processing circuitry coupled to memory. To configure the UE for multi-transmission reception point (TRP) reception, the processing circuitry is to decode radio resource control (RRC) signaling. The RRC signaling includes configuration information configuring a plurality of transmission configuration indication (TCI) states. A media access control (MAC) control element (CE) is decoded, where the MAC CE indicates multiple active TCI states of the configured plurality of TCI states. Multiple received beams are determined using the multiple active TCI states. Downlink information is decoded, where the downlink information originates from multiple TRPs and is received via the determined multiple receive beams associated with the multiple active TCI states.
    Type: Application
    Filed: March 2, 2023
    Publication date: July 6, 2023
    Inventors: Fatemeh HAMIDI-SEPEHR, Debdeep CHATTERJEE, Bishwarup MONDAL, Sergey PANTELEEV, Toufiqul ISLAM, Yushu ZHANG, Alexei Vladimirovich DAVYDOV
  • Patent number: 11695529
    Abstract: This disclosure relates to implementations to support non-UE-specific (i.e. common) and UE-specific search spaces (SS) for M-PDCCH. One implementation relates to a UE comprising RF circuitry to receive, from an eNB, configuration information of one or a plurality of common Search Spaces (CSSs) for M-PDCCH; and baseband circuitry to monitor the one or more configured CSS for M-PDCCH transmissions; wherein the RF circuitry and/or baseband circuitry is adapted to support a reduced bandwidth (BW). Another implementation relates to an eNB comprising RF circuitry to transmit configuration information of a plurality of CSSs for M-PDCCH to one or more UEs supporting a reduced BW, wherein the plurality of CSSs for M-PDCCH are differentiated by “based on functionality”-differentiation that includes the type of use case and/or an EC level of the UE.
    Type: Grant
    Filed: February 21, 2020
    Date of Patent: July 4, 2023
    Assignee: Apple Inc.
    Inventors: Debdeep Chatterjee, Marta Martinez Tarradell
  • Patent number: 11683145
    Abstract: Embodiments of dynamic multiplexing are described, including the transmission of preemption indication (PI) to indicate preemption of time-frequency resources. In some embodiments, a next Generation NodeB (gNB) is configured to transmit PIs in signaling to preempt an enhanced Mobile Broadband (eMBB) communications transmission with an ultra-reliable and low latency communications (URLCC) transmission. In some embodiments, a user equipment (UE) is configured to monitor a region of time-frequency resources, within a bandwidth part (BWP), for a PI. The PI indicates to the UE a portion of time-frequency resources that omit transmissions intended for the UE. In some embodiments, the gNB transmits the PI to the UE within preemption indication downlink control information (PI-DCI) in a physical downlink control channel (PDCCH) in a control resource set (CORESET). In some embodiments, the BWP is defined according to a frequency domain location, a bandwidth, and a subcarrier spacing for a given numerology.
    Type: Grant
    Filed: November 29, 2021
    Date of Patent: June 20, 2023
    Assignee: Apple Inc.
    Inventors: Gang Xiong, Sergey Panteleev, Debdeep Chatterjee, Yushu Zhang
  • Patent number: 11678278
    Abstract: Embodiments of a User Equipment (UE), Generation Node-B (gNB) and methods of communication are disclosed herein. The UE may attempt to decode sidelink synchronization signals (SLSSs) received on component carriers (CCs) of a carrier aggregation. In one configuration, synchronization resources for SLSS transmissions may be aligned across the CCs at subframe boundaries in time, restricted to a portion of the CCs, and restricted to a same sub-frame. The UE may, for multiple CCs, determine a priority level for the CC based on indicators in the SLSSs received on the CC. The UE may select, from the CCs on which one or more SLSSs are decoded, the CC for which the determined priority level is highest. The UE may determine a reference timing for sidelink communication based on the one or more SLSSs received on the selected CC.
    Type: Grant
    Filed: February 25, 2021
    Date of Patent: June 13, 2023
    Assignee: Apple Inc.
    Inventors: Ajit Nimbalker, Debdeep Chatterjee, Jeongho Jeon, Fatemeh Hamidi-Sepehr, Sergey Panteleev, Gang Xiong, Alexey Vladimirovich Khoryaev, Mikhail Shilov, Sergey Sosnin, Andrey Chervyakov
  • Publication number: 20230171141
    Abstract: Systems, methods, and circuitries are disclosed for generating demodulation reference signals (DM-RS). In one example, a method for a user equipment (UE), includes receiving a configuration of a plurality of bandwidth parts (BWPs) configured with respective numerologies; generating a first pseudo-random sequence based at least in part on one or more of a physical cell ID, a virtual cell ID, a symbol index, a slot index, a frame index, a scrambling ID, or a UE ID for generation of a first DM-RS sequence, wherein a initialization seed for the first pseudo-random sequence is based on a scrambling ID and a slot index, wherein, for the plurality of BWPs a respective scrambling ID is associated with each BWP, and wherein the slot index is defined in accordance with the numerology of the associated BWP; and mapping, for a first BWP, the first DM-RS sequence to at least one DM-RS symbol.
    Type: Application
    Filed: January 25, 2023
    Publication date: June 1, 2023
    Inventors: Gang Xiong, Debdeep Chatterjee, Yushu Zhang, Alexei Davydov, Wook Bong Lee, Dae Won Lee, Sameer Pawar, Jeongho Jeon, Hong He
  • Patent number: 11659564
    Abstract: Embodiments herein may relate to transmission, in a first physical channel transmission, of an indication of a first set of parameters related to a control channel; and transmission, in a control channel transmission using the first set of parameters, of an indication of a second set of parameters related to the control channel. Further embodiments may relate to identifying a first parameter related to interleaving REGBs of a PDCCH transmission, wherein the first parameter is selected from a first plurality of parameters; interleaving the REGBs based on the first parameter to form a CCE; and transmitting the CCE in the PDCCH transmission. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: May 4, 2018
    Date of Patent: May 23, 2023
    Assignee: Apple Inc.
    Inventors: Yongjun Kwak, Honglei Miao, Debdeep Chatterjee, Gang Xiong, Hong He, Dae Won Lee
  • Patent number: 11653306
    Abstract: Techniques discussed herein can facilitate communication of group-based WUS(s) (Wake Up Signal(s)) for eMTC (enhanced Machine Type Communication) and/or NB (NarrowBand)-IoT (Internet of Things). One example embodiment is an apparatus configured to be employed in a UE (User Equipment), comprising: a memory interface; and processing circuitry configured to: determine a WUS group of a plurality of WUS groups, wherein the WUS group is associated with a first group WUS (Wake Up Signal) of a plurality of group WUSs; determine a starting subframe for the first group WUS; and monitor the starting subframe for the first group WUS, wherein the UE is configured to communicate via one or more of eMTC or NB (NarrowBand)-IoT.
    Type: Grant
    Filed: August 8, 2019
    Date of Patent: May 16, 2023
    Assignee: Apple Inc.
    Inventors: Qiaoyang Ye, Debdeep Chatterjee, Gregory Morozov
  • Publication number: 20230139455
    Abstract: In one embodiment, an apparatus includes memory storing instructions and processing circuitry coupled to the memory. The processing circuitry is to implement the instructions to select a resource block group (RBG) size configuration from a set of RBG size configurations based on a bandwidth part (BWP) size. Each RBG size configuration is to indicate RBG sizes associated with respective ranges of BWP sizes, and the RBG sizes are to indicate a number of frequency-domain physical resource blocks (PRBs) for physical downlink shared channel (PDSCH) or physical uplink shared channel (PUSCH) transmissions. The processing circuitry is further to implement the instructions to allocate PRBs for communication between the gNB device and a user equipment (UE) device via the PDSCH or PUSCH transmissions based on the selected RBG size, and to encode downlink control information (DCI) that indicates the allocated PRBs for transmission to the UE device.
    Type: Application
    Filed: June 15, 2018
    Publication date: May 4, 2023
    Applicant: Intel IP Corporation
    Inventors: Debdeep Chatterjee, Sergey Panteleev, Hong He, Gang Xiong, Jeongho Jeon, Ajit Nimbalker, Joonyoung Cho
  • Patent number: 11638246
    Abstract: Systems, apparatuses, methods, and computer-readable media are provided for a user equipment (UE) device that includes one or more processors configured to identify a search space for physical downlink control channel (PDCCH) candidates by: determining whether the search space is a group common search space or a UE specific search space; determining a number of PDCCH candidates per aggregation level (AL); determining a PDCCH monitoring periodicity and a PDCCH monitoring offset for the search space, each including a plurality of slots; determining monitored slots in the monitoring periodicity; determining, for each monitored slot, a monitoring pattern including a set of selected symbols; and determining a set of monitoring occasions corresponding to the set of selected symbols in each monitored slot of each monitoring periodicity. The one or more processors are configured to decode downlink signals received in the set of monitoring occasions to search for PDCCH information for the UE.
    Type: Grant
    Filed: August 8, 2019
    Date of Patent: April 25, 2023
    Assignee: Apple Inc.
    Inventors: Fatemeh Hamidi-Sepehr, Debdeep Chatterjee, Toufiqul Islam, Sergey Panteleev
  • Patent number: 11637656
    Abstract: Provided herein are method and apparatus for channel coding in the fifth Generation (5G) New Radio (NR) system. An embodiment provides an apparatus for a Next Generation NodeB (gNB), including circuitry, which is configured to: generate Downlink Control Information (DCI) payload for a NR-Physical Downlink Control Channel (NR-PDCCH); attach Cyclic Redundancy Check (CRC) to the DCI payload; mask the CRC with an Radio Network Temporary Identifier (RNTI) using a bitwise modulus 2 addition operation, wherein the number of bits for the RNTI is different from the number of bits for the CRC; and perform polar encoding for the DCI payload with the masked CRC.
    Type: Grant
    Filed: March 10, 2021
    Date of Patent: April 25, 2023
    Assignee: Apple Inc.
    Inventors: Debdeep Chatterjee, Hong He, Gang Xiong, Ajit Nimbalker, Dmitry Dikarev, Yongjun Kwak
  • Publication number: 20230117785
    Abstract: A user equipment (UE) may include one or more processors that are configured to cause UE capability information to be communicated to a radio access network (RAN) node, regarding a maximum number of blind decode attempts (BDAs) supported by the UE. The one or more processors are configured to determine, based on the maximum BDAs, shortened channel control elements (sCCEs) to be used, by the RAN node, to transmit shortened downlink control information (sDCI) via a shortened physical downlink control channel (sPDCCH) and obtain sDCI by monitoring the sPDCCH in accordance with the determined sCCEs.
    Type: Application
    Filed: August 24, 2022
    Publication date: April 20, 2023
    Inventors: Debdeep Chatterjee, Gang Xiong, Hong He, Yongjun Kwak, Alexei Davydov, Hwan-Joon Kwon, Dae Won Lee
  • Publication number: 20230089890
    Abstract: Embodiments of a User Equipment (UE), generation Node-B (gNB) and methods of communication are generally described herein. The UE may receive, from a gNB, a narrowband physical downlink control channel (NPDCCH) that indicates a number of narrowband internet-of-things (NB-IoT) downlink subframes for a downlink scheduling delay of a narrowband physical downlink shared channel (NPDSCH) in one or more radio frames configured for time-division duplexing (TDD) operation. Subframes of the one or more radio frames may include uplink subframes, NB-IoT downlink subframes for downlink NB-IoT transmissions, and downlink subframes for other downlink transmissions. The UE may determine the downlink scheduling delay based on an earliest subframe for which a count of NB-IoT downlink subframes is equal to the number of NB-IoT downlink subframes indicated in the NPDCCH.
    Type: Application
    Filed: November 28, 2022
    Publication date: March 23, 2023
    Inventors: Seunghee HAN, Debdeep CHATTERJEE, Qiaoyang YE
  • Patent number: 11601315
    Abstract: Systems, methods, and circuitries are disclosed for determining Precoding Resource Block Groups (PRGs). In one example, a processor of a base station (BS) is configured to determine a plurality of PRGs that includes a number N consecutive Physical Resource Blocks (PRBs) over which a same precoder assignment is used, starting from a reference PRB. The plurality PRGs include a first boundary PRG, a second boundary PRG, and one or more other PRGs. The first boundary PRG is located at an upper boundary of a bandwidth part. The first boundary PRG comprises fewer than N PRBs when the upper boundary of the bandwidth part is not aligned with a PRG boundary. The second boundary PRG comprises fewer than N PRBs when a lower boundary of the bandwidth part is not aligned with a PRG boundary. A downlink data channel is transmitted to a UE in accordance with the precoder assignments.
    Type: Grant
    Filed: November 22, 2021
    Date of Patent: March 7, 2023
    Assignee: Apple Inc.
    Inventors: Gang Xiong, Debdeep Chatterjee, Yushu Zhang, Alexei Davydov, Wook Bong Lee, Dae Won Lee, Sameer Pawar, Jeongho Jeon, Hong He
  • Patent number: 11601824
    Abstract: User equipment (UE) includes processing circuitry coupled to memory. To configure the UE for multi-transmission reception point (TRP) reception, the processing circuitry is to decode radio resource control (RRC) signaling. The RRC signaling includes configuration information configuring a plurality of transmission configuration indication (TCI) states. A media access control (MAC) control element (CE) is decoded, where the MAC CE indicates multiple active TCI states of the configured plurality of TCI states. Multiple received beams are determined using the multiple active TCI states. Downlink information is decoded, where the downlink information originates from multiple TRPs and is received via the determined multiple receive beams associated with the multiple active TCI states.
    Type: Grant
    Filed: August 7, 2019
    Date of Patent: March 7, 2023
    Assignee: Apple Inc.
    Inventors: Fatemeh Hamidi-Sepehr, Debdeep Chatterjee, Bishwarup Mondal, Sergey Panteleev, Toufiqul Islam, Yushu Zhang, Alexei Vladimirovich Davydov
  • Patent number: 11595925
    Abstract: Embodiments of efeMTC synchronization signals for enhanced cell search and enhanced system information acquisition are described. In some embodiments, an apparatus of a base station (BS) is configured to generate a length-x sequence for an efeMTC synchronization signal, the length-x sequence configured for repetition in frequency domain within 6 physical resource blocks (PRB). In some embodiments, to generate the length-x sequence, the BS may be configured to select any one index of the set of root indices {1, 2, 63}, excluding the root indices 25, 29 and 34, to correspond to a different physical-layer cell identity (PCID). In some embodiments, the BS may be configured to encode RRC signaling to include a System Information Block (SIB) comprising configuration information for transmission of the efeMTC synchronization signal, and transmit the length-x sequence as the efeMTC synchronization signal in frequency resources according to the SIB.
    Type: Grant
    Filed: August 9, 2021
    Date of Patent: February 28, 2023
    Assignee: Apple Inc.
    Inventors: Salvatore Talarico, Qiaoyang Ye, Debdeep Chatterjee, Seunghee Han, Dae Won Lee
  • Publication number: 20230047403
    Abstract: A device of a New Radio (NR) User Equipment (UE), a method and a machine readable medium to implement the method. The device includes a Radio Frequency (RF) interface, and processing circuitry coupled to the RF interface, the processing circuitry to: determine that the UE is configured with a feature of multiple Physical Uplink Control Channel (PUCCH) resources with HARQ-ACK feedback within a slot; determine a Physical Uplink Control Channel (PUCCH) resource to carry Hybrid Automatic Repeat Request Acknowledgment (HARQ-ACK) feedback in response to a scheduled Physical Downlink Shared Channel (PDSCH) resource; and encode for transmission to a NR evolved NodeB (gNodeB) the PUCCH resource, the PUCCH resource to carry the HARQ-ACK feedback and: another PUCCH resource carrying Uplink Control Information (UCI) other than HARQ-ACK feedback, and a scheduled Physical Uplink Shared Channel (PUSCH) resource.
    Type: Application
    Filed: October 19, 2022
    Publication date: February 16, 2023
    Inventors: Gang Xiong, Debdeep Chatterjee, Fatemeh Hamidi-Sepehr, Toufiqul Islam, Sergey Panteleev
  • Publication number: 20230037852
    Abstract: Various embodiments herein provide techniques paging early indication for a user equipment in an idle and/or inactive state. Other embodiments may be described and claimed.
    Type: Application
    Filed: September 30, 2022
    Publication date: February 9, 2023
    Inventors: Toufiqul Islam, Debdeep Chatterjee
  • Publication number: 20230044098
    Abstract: Embodiments of a User Equipment (UE), Generation Node-B (gNB) and methods of communication are disclosed herein. The UE may attempt to decode sidelink synchronization signals (SLSSs) received on component carriers (CCs) of a carrier aggregation. In one configuration, synchronization resources for SLSS transmissions may be aligned across the CCs at subframe boundaries in time, restricted to a portion of the CCs, and restricted to a same sub-frame. The UE may, for multiple CCs, determine a priority level for the CC based on indicators in the SLSSs received on the CC. The UE may select, from the CCs on which one or more SLSSs are decoded, the CC for which the determined priority level is highest. The UE may determine a reference timing for sidelink communication based on the one or more SLSSs received on the selected CC.
    Type: Application
    Filed: September 22, 2022
    Publication date: February 9, 2023
    Inventors: Ajit Nimbalker, Debdeep Chatterjee, Jeongho Jeon, Fatemeh Hamidi-Sepehr, Sergey Panteleev, Gang Xiong, Alexey Vladimirovich Khoryaev, Mikhail Shilov, Sergey Sosnin, Andrey Chervyakov