Patents by Inventor Debidatta Dwibedi

Debidatta Dwibedi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11797860
    Abstract: Systems and methods for cuboid detection and keypoint localization in images are disclosed. In one aspect, a deep cuboid detector can be used for simultaneous cuboid detection and keypoint localization in monocular images. The deep cuboid detector can include a plurality of convolutional layers and non-convolutional layers of a trained convolution neural network for determining a convolutional feature map from an input image. A region proposal network of the deep cuboid detector can determine a bounding box surrounding a cuboid in the image using the convolutional feature map. The pooling layer and regressor layers of the deep cuboid detector can implement iterative feature pooling for determining a refined bounding box and a parameterized representation of the cuboid.
    Type: Grant
    Filed: April 11, 2022
    Date of Patent: October 24, 2023
    Assignee: MAGIC LEAP, INC.
    Inventors: Tomasz Jan Malisiewicz, Andrew Rabinovich, Vijay Badrinarayanan, Debidatta Dwibedi
  • Publication number: 20230274548
    Abstract: Techniques are disclosed that enable processing a video capturing a periodic activity using a repetition network to generate periodic output (e.g., a period length of the periodic activity captured in the video and/or a frame wise periodicity indication of the video capturing the periodic activity). Various implementations include a class agnostic repetition network which can be used to generate periodic output for a wide variety of periodic activities. Additional or alternative implementations include generating synthetic repetition videos which can be utilized to train the repetition network.
    Type: Application
    Filed: June 10, 2020
    Publication date: August 31, 2023
    Inventors: Debidatta Dwibedi, Yusuf Aytar, Jonathan Tompson, Andrew Zisserman, Pierre Sermanet
  • Publication number: 20220237815
    Abstract: Systems and methods for cuboid detection and keypoint localization in images are disclosed. In one aspect, a deep cuboid detector can be used for simultaneous cuboid detection and keypoint localization in monocular images. The deep cuboid detector can include a plurality of convolutional layers and non-convolutional layers of a trained convolution neural network for determining a convolutional feature map from an input image. A region proposal network of the deep cuboid detector can determine a bounding box surrounding a cuboid in the image using the convolutional feature map. The pooling layer and regressor layers of the deep cuboid detector can implement iterative feature pooling for determining a refined bounding box and a parameterized representation of the cuboid.
    Type: Application
    Filed: April 11, 2022
    Publication date: July 28, 2022
    Inventors: Tomasz Jan Malisiewicz, Andrew Rabinovich, Vijay Badrinarayanan, Debidatta Dwibedi
  • Patent number: 11328443
    Abstract: Systems and methods for cuboid detection and keypoint localization in images are disclosed. In one aspect, a deep cuboid detector can be used for simultaneous cuboid detection and keypoint localization in monocular images. The deep cuboid detector can include a plurality of convolutional layers and non-convolutional layers of a trained convolution neural network for determining a convolutional feature map from an input image. A region proposal network of the deep cuboid detector can determine a bounding box surrounding a cuboid in the image using the convolutional feature map. The pooling layer and regressor layers of the deep cuboid detector can implement iterative feature pooling for determining a refined bounding box and a parameterized representation of the cuboid.
    Type: Grant
    Filed: January 12, 2021
    Date of Patent: May 10, 2022
    Assignee: Magic Leap, Inc.
    Inventors: Tomasz Jan Malisiewicz, Andrew Rabinovich, Vijay Badrinarayanan, Debidatta Dwibedi
  • Publication number: 20220004883
    Abstract: An encoder neural network is described which can encode a data item, such as a frame of a video, to form a respective encoded data item. Data items of a first data sequence are associated with respective data items of a second sequence, by determining which of the encoded data items of the second sequence is closest to the encoded data item produced from each data item of the first sequence. Thus, the two data sequences are aligned. The encoder neural network is trained automatically using a training set of data sequences, by an iterative process of successively increasing cycle consistency between pairs of the data sequences.
    Type: Application
    Filed: November 21, 2019
    Publication date: January 6, 2022
    Inventors: Yusuf Aytar, Debidatta Dwibedi, Andrew Zisserman, Jonathan Tompson, Pierre Sermanet
  • Publication number: 20210134000
    Abstract: Systems and methods for cuboid detection and keypoint localization in images are disclosed. In one aspect, a deep cuboid detector can be used for simultaneous cuboid detection and keypoint localization in monocular images. The deep cuboid detector can include a plurality of convolutional layers and non-convolutional layers of a trained convolution neural network for determining a convolutional feature map from an input image. A region proposal network of the deep cuboid detector can determine a bounding box surrounding a cuboid in the image using the convolutional feature map. The pooling layer and regressor layers of the deep cuboid detector can implement iterative feature pooling for determining a refined bounding box and a parameterized representation of the cuboid.
    Type: Application
    Filed: January 12, 2021
    Publication date: May 6, 2021
    Inventors: Tomasz Jan Malisiewicz, Andrew Rabinovich, Vijay Badrinarayanan, Debidatta Dwibedi
  • Patent number: 10937188
    Abstract: Systems and methods for cuboid detection and keypoint localization in images are disclosed. In one aspect, a deep cuboid detector can be used for simultaneous cuboid detection and keypoint localization in monocular images. The deep cuboid detector can include a plurality of convolutional layers and non-convolutional layers of a trained convolution neural network for determining a convolutional feature map from an input image. A region proposal network of the deep cuboid detector can determine a bounding box surrounding a cuboid in the image using the convolutional feature map. The pooling layer and regressor layers of the deep cuboid detector can implement iterative feature pooling for determining a refined bounding box and a parameterized representation of the cuboid.
    Type: Grant
    Filed: March 5, 2020
    Date of Patent: March 2, 2021
    Assignee: Magic Leap, Inc.
    Inventors: Tomasz Jan Malisiewicz, Andrew Rabinovich, Vijay Badrinarayanan, Debidatta Dwibedi
  • Publication number: 20200202554
    Abstract: Systems and methods for cuboid detection and keypoint localization in images are disclosed. In one aspect, a deep cuboid detector can be used for simultaneous cuboid detection and keypoint localization in monocular images. The deep cuboid detector can include a plurality of convolutional layers and non-convolutional layers of a trained convolution neural network for determining a convolutional feature map from an input image. A region proposal network of the deep cuboid detector can determine a bounding box surrounding a cuboid in the image using the convolutional feature map. The pooling layer and regressor layers of the deep cuboid detector can implement iterative feature pooling for determining a refined bounding box and a parameterized representation of the cuboid.
    Type: Application
    Filed: March 5, 2020
    Publication date: June 25, 2020
    Inventors: Tomasz Jan Malisiewicz, Andrew Rabinovich, Vijay Badrinarayanan, Debidatta Dwibedi
  • Patent number: 10621747
    Abstract: Systems and methods for cuboid detection and keypoint localization in images are disclosed. In one aspect, a deep cuboid detector can be used for simultaneous cuboid detection and keypoint localization in monocular images. The deep cuboid detector can include a plurality of convolutional layers and non-convolutional layers of a trained convolution neural network for determining a convolutional feature map from an input image. A region proposal network of the deep cuboid detector can determine a bounding box surrounding a cuboid in the image using the convolutional feature map. The pooling layer and regressor layers of the deep cuboid detector can implement iterative feature pooling for determining a refined bounding box and a parameterized representation of the cuboid.
    Type: Grant
    Filed: November 14, 2017
    Date of Patent: April 14, 2020
    Assignee: Magic Leap, Inc.
    Inventors: Tomasz Jan Malisiewicz, Andrew Rabinovich, Vijay Badrinarayanan, Debidatta Dwibedi
  • Publication number: 20180137642
    Abstract: Systems and methods for cuboid detection and keypoint localization in images are disclosed. In one aspect, a deep cuboid detector can be used for simultaneous cuboid detection and keypoint localization in monocular images. The deep cuboid detector can include a plurality of convolutional layers and non-convolutional layers of a trained convolution neural network for determining a convolutional feature map from an input image. A region proposal network of the deep cuboid detector can determine a bounding box surrounding a cuboid in the image using the convolutional feature map. The pooling layer and regressor layers of the deep cuboid detector can implement iterative feature pooling for determining a refined bounding box and a parameterized representation of the cuboid.
    Type: Application
    Filed: November 14, 2017
    Publication date: May 17, 2018
    Inventors: Tomasz Malisiewicz, Andrew Rabinovich, Vijay Badrinarayanan, Debidatta Dwibedi