Patents by Inventor Debkumar Mukhopadhyay

Debkumar Mukhopadhyay has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240131583
    Abstract: Embodiments disclosed herein relate to polycrystalline diamond compacts that have a substrate including a cementing constituent constituting less than 13 weight percent (wt %) of the substrate, the cementing constituent including a cobalt alloy having and at least one alloying element, wherein the at least one alloying element constitutes less than 12 wt % of the substrate and wherein the cobalt constitutes less than 12 wt % of the substrate; and methods of making the same.
    Type: Application
    Filed: October 30, 2023
    Publication date: April 25, 2024
    Inventor: Debkumar Mukhopadhyay
  • Patent number: 11839917
    Abstract: Embodiments disclosed herein relate to polycrystalline diamond compacts that have a substrate including a cementing constituent constituting less than 13 weight percent (wt %) of the substrate, the cementing constituent including a cobalt alloy having and at least one alloying element, wherein the at least one alloying element constitutes less than 12 wt % of the substrate and wherein the cobalt constitutes less than 12 wt % of the substrate; and methods of making the same.
    Type: Grant
    Filed: September 11, 2019
    Date of Patent: December 12, 2023
    Assignee: US SYNTHETIC CORPORATION
    Inventor: Debkumar Mukhopadhyay
  • Patent number: 11773654
    Abstract: Embodiments of the invention relate to polycrystalline diamond compact (“PDC”) including a polycrystalline diamond (“PCD”) table that bonded to a cobalt-nickel alloy cemented carbide substrate. The cobalt-nickel alloy cemented carbide substrate provides both erosion resistance and corrosion resistance to the cemented carbide substrate. In an embodiment, a PDC includes a cemented carbide substrate including cobalt-nickel alloy cementing constituent. The PDC further includes a PCD table bonded to the cemented carbide substrate.
    Type: Grant
    Filed: December 14, 2021
    Date of Patent: October 3, 2023
    Assignee: US SYNTHETIC CORPORATION
    Inventors: Debkumar Mukhopadhyay, Kenneth E. Bertagnolli
  • Patent number: 11746601
    Abstract: Embodiments relate to a polycrystalline diamond compact (“PDC”) including a polycrystalline diamond (“PCD”) table having at least two regions and being bonded to a fine grained cemented tungsten carbide substrate. In an embodiment, a PDC includes a cemented carbide substrate having a cobalt-containing cementing constituent cementing tungsten carbide grains together that exhibit an average grain size of about 1.5 ?m or less, and a PCD table having at least one upper region including diamond grains exhibiting an upper average grain size and at least one lower region adjacent to the upper region a lower average grain size that may be at least two times greater than the upper average grain size. The cemented carbide substrate includes an interfacial surface and a depletion zone depleted of the cementing constituent that extends inwardly from the interfacial surface to a depth of, for example, about 30 ?m to about 60 ?m.
    Type: Grant
    Filed: September 27, 2019
    Date of Patent: September 5, 2023
    Assignee: US SYNTHETIC CORPORATION
    Inventors: Debkumar Mukhopadhyay, Greg Carlos Topham, Renato Ventura
  • Patent number: 11661798
    Abstract: Embodiments relate to a polycrystalline diamond compact (“PDC”) including a polycrystalline diamond (“PCD”) table bonded to a cemented carbide substrate including tungsten carbide grains having a fine average grain size to provide one or more of enhanced wear resistance, corrosion resistance, or erosion resistance, and a PDC with enhanced impact resistance. In an embodiment, a PDC includes a cemented carbide substrate having a cobalt-containing cementing constituent cementing tungsten carbide grains together exhibiting an average grain size of about 1.5 ?m or less. The substrate includes an interfacial surface and a depletion zone depleted of the cementing constituent that extends inwardly from the interfacial surface to a depth of, for example, about 30 ?m to about 60 ?m. The PDC includes a PCD table bonded to the interfacial surface of the substrate. The PCD table includes diamond grains bonded together exhibiting an average grain size of about 40 ?m or less.
    Type: Grant
    Filed: February 13, 2020
    Date of Patent: May 30, 2023
    Assignee: US SYNTHETIC CORPORATION
    Inventor: Debkumar Mukhopadhyay
  • Patent number: 11525309
    Abstract: Embodiments relate to polycrystalline diamond compacts (“PDCs”) including a polycrystalline diamond (“PCD”) table in which a metal-solvent catalyst is alloyed with at least one alloying element to improve thermal stability of the PCD table. In an embodiment, a PDC includes a substrate and a PCD table bonded to the substrate. The PCD table includes diamond grains defining interstitial regions. The PCD table includes an alloy comprising at least one Group VIII metal and at least one metallic alloying element that lowers a temperature at which melting of the at least one Group VIII metal begins. The alloy includes one or more solid solution phases comprising the at least one Group VIII metal and the at least one metallic alloying element and one or more intermediate compounds comprising the at least one Group VIII metal and the at least one metallic alloying element.
    Type: Grant
    Filed: August 26, 2019
    Date of Patent: December 13, 2022
    Assignee: US Synthetic Corporation
    Inventors: Cody William Knuteson, Paul Douglas Jones, Brandon P. Linford, Brent R. Eddy, Kenneth E. Bertagnolli, Debkumar Mukhopadhyay
  • Patent number: 11224957
    Abstract: Embodiments of the invention relate to polycrystalline diamond compact (“PDC”) including a polycrystalline diamond (“PCD”) table that bonded to a cobalt-nickel alloy cemented carbide substrate. The cobalt-nickel alloy cemented carbide substrate provides both erosion resistance and corrosion resistance to the cemented carbide substrate. In an embodiment, a PDC includes a cemented carbide substrate including cobalt-nickel alloy cementing constituent. The PDC further includes a PCD table bonded to the cemented carbide substrate.
    Type: Grant
    Filed: November 1, 2019
    Date of Patent: January 18, 2022
    Assignee: US SYNTHETIC CORPORATION
    Inventors: Debkumar Mukhopadhyay, Kenneth E. Bertagnolli
  • Patent number: 11141834
    Abstract: Embodiments of the invention relate to polycrystalline diamond compacts (“PDCs”) and methods of fabricating polycrystalline diamond tables and PDCs in a manner that facilitates removal of metal-solvent catalyst used in the manufacture of polycrystalline diamond tables of such PDCs.
    Type: Grant
    Filed: January 3, 2018
    Date of Patent: October 12, 2021
    Assignee: US SYNTHETIC CORPORATION
    Inventors: Mohammad N. Sani, Jair J. Gonzalez, Andrew E. Dadson, Debkumar Mukhopadhyay
  • Publication number: 20210262295
    Abstract: In an embodiment, a method of fabricating a polycrystalline diamond compact is disclosed. The method includes sintering a plurality of diamond particles in the presence of a metal-solvent catalyst to form a polycrystalline diamond body; leaching the polycrystalline diamond body to at least partially remove the metal-solvent catalyst therefrom, thereby forming an at least partially leached polycrystalline diamond body; and subjecting an assembly of the at least partially leached polycrystalline diamond body and a cemented carbide substrate to a high-pressure/high-temperature process at a pressure to infiltrate the at least partially leached polycrystalline diamond body with an infiltrant. The pressure of the high-pressure/high-temperature process is less than that employed in the act of sintering of the plurality of diamond particles.
    Type: Application
    Filed: February 24, 2021
    Publication date: August 26, 2021
    Inventors: Kenneth E. Bertagnolli, David P. Miess, Jiang Qian, Jason K. Wiggins, Michael A. Vail, Debkumar Mukhopadhyay
  • Publication number: 20210229177
    Abstract: Embodiments disclosed herein relate to polycrystalline diamond compacts that have a substrate including a cementing constituent constituting less than 13 weight percent (wt %) of the substrate, the cementing constituent including a cobalt alloy having and at least one alloying element, wherein the at least one alloying element constitutes less than 12 wt % of the substrate and wherein the cobalt constitutes less than 12 wt % of the substrate; and methods of making the same.
    Type: Application
    Filed: September 11, 2019
    Publication date: July 29, 2021
    Inventor: Debkumar Mukhopadhyay
  • Patent number: 10961785
    Abstract: In an embodiment, a method of fabricating a polycrystalline diamond compact is disclosed. The method includes sintering a plurality of diamond particles in the presence of a metal-solvent catalyst to form a polycrystalline diamond body; leaching the polycrystalline diamond body to at least partially remove the metal-solvent catalyst therefrom, thereby forming an at least partially leached polycrystalline diamond body; and subjecting an assembly of the at least partially leached polycrystalline diamond body and a cemented carbide substrate to a high-pressure/high-temperature process at a pressure to infiltrate the at least partially leached polycrystalline diamond body with an infiltrant. The pressure of the high-pressure/high-temperature process is less than that employed in the act of sintering of the plurality of diamond particles.
    Type: Grant
    Filed: October 29, 2019
    Date of Patent: March 30, 2021
    Assignee: US SYNTHETIC CORPORATION
    Inventors: Kenneth E. Bertagnolli, David P. Miess, Jiang Qian, Jason K. Wiggins, Michael A. Vail, Debkumar Mukhopadhyay
  • Patent number: 10858892
    Abstract: Embodiments relate to polycrystalline diamond compacts (“PDCs”) including a polycrystalline diamond (“PCD”) table in which a metal-solvent catalyst is alloyed with at least one alloying element to improve thermal stability and/or wear resistance of the PCD table. In an embodiment, a PDC includes a substrate and a PCD table bonded to the substrate. The PCD table includes diamond grains defining interstitial regions. The PCD table includes an alloy comprising at least one Group VIII metal and at least one metallic alloying element such as phosphorous.
    Type: Grant
    Filed: July 12, 2018
    Date of Patent: December 8, 2020
    Assignee: US SYNTHETIC CORPORATION
    Inventors: Debkumar Mukhopadhyay, Kenneth E. Bertagnolli, Cody William Knuteson
  • Publication number: 20200331811
    Abstract: Embodiments of the invention relate to polycrystalline diamond (“PCD”) exhibiting enhanced diamond-to-diamond bonding. In an embodiment, PCD includes a plurality of diamond grains defining a plurality of interstitial regions. A metal-solvent catalyst occupies at least a portion of the plurality of interstitial regions. The plurality of diamond grains and the metal-solvent catalyst collectively exhibit a coercivity of about 115 Oersteds (“Oe”) or more and a specific magnetic saturation of about 15 Gauss·cm3/grams (“G·cm3/g”) or less. Other embodiments are directed to polycrystalline diamond compacts (“PDCs”) employing such PCD, methods of forming PCD and PDCs, and various applications for such PCD and PDCs in rotary drill bits, bearing apparatuses, and wire-drawing dies.
    Type: Application
    Filed: May 21, 2020
    Publication date: October 22, 2020
    Inventors: Kenneth E. Bertagnolli, Jiang Qian, Jason Wiggins, Michael Vail, Debkumar Mukhopadhyay
  • Patent number: 10773480
    Abstract: Embodiments disclosed herein relate to cell assemblies for fabricating superhard materials (e.g., used in a high-pressure cubic press) and methods of using the same. The disclosed cell assemblies include a plurality of internal anvils, at least some of which are positioned internally relative to a cell pressure medium of the cell assembly. Such a configuration for the cell assemblies may enable one or more of intensifying cell pressure, reducing processing time, or reducing costs for fabricating such superhard materials.
    Type: Grant
    Filed: October 1, 2019
    Date of Patent: September 15, 2020
    Assignee: US SYNTHETIC CORPORATION
    Inventors: Kenneth E. Bertagnolli, Michael A. Vail, Jiang Qian, Jason K. Wiggins, Mark P. Chapman, Arnold D. Cooper, Debkumar Mukhopadhyay, Amy Leigh Rodriguez, Stephen Rudger Adams
  • Publication number: 20200256133
    Abstract: Embodiments disclosed herein relate to superabrasive compacts, methods of making the same, and drill bits incorporating the same. For example, embodiments of a superabrasive compact disclosed herein (e.g., a PDC) may be formed by providing a superabrasive compact. The superabrasive compact includes a superabrasive body and a cemented carbide substrate bonded to the superabrasive body. The cemented carbide substrate includes a base surface, an interfacial surface bonded to the superabrasive body, and at least one peripheral surface extending between the base surface and the interfacial surface.
    Type: Application
    Filed: February 11, 2020
    Publication date: August 13, 2020
    Inventors: Anne-Grethe Slotnaes, Daniel Scott, Debkumar Mukhopadhyay, Jeremy B. Lynn, Jiang Qian
  • Patent number: 10703681
    Abstract: Embodiments of the invention relate to polycrystalline diamond (“PCD”) exhibiting enhanced diamond-to-diamond bonding. In an embodiment, PCD includes a plurality of diamond grains defining a plurality of interstitial regions. A metal-solvent catalyst occupies at least a portion of the plurality of interstitial regions. The plurality of diamond grains and the metal-solvent catalyst collectively exhibit a coercivity of about 115 Oersteds (“Oe”) or more and a specific magnetic saturation of about 15 Gauss·cm3/grams (“G·cm3/g”) or less. Other embodiments are directed to polycrystalline diamond compacts (“PDCs”) employing such PCD, methods of forming PCD and PDCs, and various applications for such PCD and PDCs in rotary drill bits, bearing apparatuses, and wire-drawing dies.
    Type: Grant
    Filed: February 21, 2018
    Date of Patent: July 7, 2020
    Assignee: US SYNTHETIC CORPORATION
    Inventors: Kenneth E. Bertagnolli, Jiang Qian, Jason Wiggins, Michael Vail, Debkumar Mukhopadhyay
  • Publication number: 20200141189
    Abstract: In an embodiment, a method of fabricating a polycrystalline diamond compact is disclosed. The method includes sintering a plurality of diamond particles in the presence of a metal-solvent catalyst to form a polycrystalline diamond body; leaching the polycrystalline diamond body to at least partially remove the metal-solvent catalyst therefrom, thereby forming an at least partially leached polycrystalline diamond body; and subjecting an assembly of the at least partially leached polycrystalline diamond body and a cemented carbide substrate to a high-pressure/high-temperature process at a pressure to infiltrate the at least partially leached polycrystalline diamond body with an infiltrant. The pressure of the high-pressure/high-temperature process is less than that employed in the act of sintering of the plurality of diamond particles.
    Type: Application
    Filed: October 29, 2019
    Publication date: May 7, 2020
    Inventors: Kenneth E. Bertagnolli, David P. Miess, Jiang Qian, Jason K. Wiggins, Michael A. Vail, Debkumar Mukhopadhyay
  • Publication number: 20200130141
    Abstract: Embodiments of the invention relate to polycrystalline diamond compacts (“PDC”) exhibiting enhanced diamond-to-diamond bonding. In an embodiment, a PDC includes a polycrystalline diamond (“PCD”) table bonded to a substrate. At least a portion of the PCD table includes a plurality of diamond grains defining a plurality of interstitial regions. The plurality of interstitial regions includes a metal-solvent catalyst. The plurality of diamond grains exhibit an average grain size of about 30 ?m or less. The plurality of diamond grains and the metal-solvent catalyst collectively exhibit an average electrical conductivity of less than about 1200 S/m. Other embodiments are directed to PCD, employing such PCD, methods of forming PCD and PDCs, and various applications for such PCD and PDCs in rotary drill bits, bearing apparatuses, and wire-drawing dies.
    Type: Application
    Filed: October 29, 2019
    Publication date: April 30, 2020
    Inventors: Kenneth E. Bertagnolli, Jiang Qian, Jason K. Wiggins, Michael A. Vail, Debkumar Mukhopadhyay, Brandon P. Linford
  • Patent number: 10612313
    Abstract: Embodiments relate to a polycrystalline diamond compact (“PDC”) including a polycrystalline diamond (“PCD”) table bonded to a cemented carbide substrate including tungsten carbide grains having a fine average grain size to provide one or more of enhanced wear resistance, corrosion resistance, or erosion resistance, and a PDC with enhanced impact resistance. In an embodiment, a PDC includes a cemented carbide substrate having a cobalt-containing cementing constituent cementing tungsten carbide grains together exhibiting an average grain size of about 1.5 ?m or less. The substrate includes an interfacial surface and a depletion zone depleted of the cementing constituent that extends inwardly from the interfacial surface to a depth of, for example, about 30 ?m to about 60 ?m. The PDC includes a PCD table bonded to the interfacial surface of the substrate. The PCD table includes diamond grains bonded together exhibiting an average grain size of about 40 ?m or less.
    Type: Grant
    Filed: July 13, 2017
    Date of Patent: April 7, 2020
    Assignee: US SYNTHETIC CORPORATION
    Inventor: Debkumar Mukhopadhyay
  • Publication number: 20200031076
    Abstract: Embodiments disclosed herein relate to cell assemblies for fabricating superhard materials (e.g., used in a high-pressure cubic press) and methods of using the same. The disclosed cell assemblies include a plurality of internal anvils, at least some of which are positioned internally relative to a cell pressure medium of the cell assembly. Such a configuration for the cell assemblies may enable one or more of intensifying cell pressure, reducing processing time, or reducing costs for fabricating such superhard materials.
    Type: Application
    Filed: October 1, 2019
    Publication date: January 30, 2020
    Inventors: Kenneth E. Bertagnolli, Michael A. Vail, Jiang Qian, Jason K. Wiggins, Mark P. Chapman, Arnold D. Cooper, Debkumar Mukhopadhyay, Amy Leigh Rodriguez, Stephen Rudger Adams