Patents by Inventor Debraj Basu

Debraj Basu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11580420
    Abstract: Methods, systems, and non-transitory computer readable storage media are disclosed for analyzing feature impact of a machine-learning model using prototypes across analytical spaces. For example, the disclosed system can identify features of data points used to generate outputs via a machine-learning model and then map the features to a feature space and the outputs to a label space. The disclosed system can then utilize an iterative process to determine prototypes from the data points based on distances between the data points in the feature space and the label space. Furthermore, the disclosed system can then use the prototypes to determine the impact of the features within the machine-learning model based on locally sensitive directions; region variability; or mean, range, and variance of features of the prototypes.
    Type: Grant
    Filed: January 22, 2019
    Date of Patent: February 14, 2023
    Assignee: Adobe Inc.
    Inventors: Deepak Pai, Joshua Sweetkind-Singer, Debraj Basu
  • Publication number: 20200234158
    Abstract: Methods, systems, and non-transitory computer readable storage media are disclosed for analyzing feature impact of a machine-learning model using prototypes across analytical spaces. For example, the disclosed system can identify features of data points used to generate outputs via a machine-learning model and then map the features to a feature space and the outputs to a label space. The disclosed system can then utilize an iterative process to determine prototypes from the data points based on distances between the data points in the feature space and the label space. Furthermore, the disclosed system can then use the prototypes to determine the impact of the features within the machine-learning model based on locally sensitive directions; region variability; or mean, range, and variance of features of the prototypes.
    Type: Application
    Filed: January 22, 2019
    Publication date: July 23, 2020
    Inventors: Deepak Pai, Joshua Sweetkind-Singer, Debraj Basu
  • Patent number: 10515379
    Abstract: A computer system stores digital media content such as images and video along with associated tags and timestamps. The system detects trends in the media content by semantic analysis which includes generation of a temporal tag graph that includes data indicative of a semantic representation of the tags over a plurality of time periods. The data in the tag graph is clustered to generate a set of identified trends reflected by the tags over the plurality of time periods. The set of identified trends is stored in data storage and is available for characterization which includes labeling of the trends, scoring the trends, evaluating changes in the trends over time, and identifying images representative of the detected trends. The temporal tag graph may take the form of a weighted undirected graph where each node in the graph is associated with one of the tags and the edges connecting the nodes represents a temporal correlation between the nodes associated with each edge.
    Type: Grant
    Filed: December 20, 2016
    Date of Patent: December 24, 2019
    Assignee: Adobe Inc.
    Inventors: Prakhar Gupta, Nalam V S S Krishna Chaitanya, Debraj Basu, Aayush Ojha
  • Publication number: 20180174160
    Abstract: A computer system stores digital media content such as images and video along with associated tags and timestamps. The system detects trends in the media content by semantic analysis which includes generation of a temporal tag graph that includes data indicative of a semantic representation of the tags over a plurality of time periods. The data in the tag graph is clustered to generate a set of identified trends reflected by the tags over the plurality of time periods. The set of identified trends is stored in data storage and is available for characterization which includes labeling of the trends, scoring the trends, evaluating changes in the trends over time, and identifying images representative of the detected trends. The temporal tag graph may take the form of a weighted undirected graph where each node in the graph is associated with one of the tags and the edges connecting the nodes represents a temporal correlation between the nodes associated with each edge.
    Type: Application
    Filed: December 20, 2016
    Publication date: June 21, 2018
    Applicant: Adobe Systems Incorporated
    Inventors: Prakhar Gupta, Nalam V S S Krishna Chaitanya, Debraj Basu, Aayush Ojha