Patents by Inventor Deepa Mahajan

Deepa Mahajan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230173282
    Abstract: Systems and methods for detecting cardiac arrhythmias such as atrial tachyarrhythmia (AT) are discussed. An exemplary system includes an arrhythmia detector circuit that can receive physiologic information sensed from a patient over time, detect an arrhythmia onset when the physiologic information during a first time period satisfies an onset condition, and in response to the detected arrhythmia onset, detect an arrhythmia termination when the physiologic information during a second time period, subsequent to and longer than the first time period, satisfies an exit condition. An arrhythmia episode can be detected based on an arrhythmia duration between the detected onset and termination. The detected sustained arrhythmia episode can be provided to a user or a processor for further processing.
    Type: Application
    Filed: December 1, 2022
    Publication date: June 8, 2023
    Inventors: Abhijit Rajan, Deepa Mahajan, David L. Perschbacher
  • Patent number: 11666753
    Abstract: A device for the active fixation of an implantable medical lead includes a housing, a tine assembly, an electrode, and a rotatable shaft. The housing includes a proximal end for connecting to the lead and a distal end opposite the proximal end. The housing defines a housing lumen extending between the proximal end and a recess adjacent to the distal end. The tine assembly is disposed within the housing lumen and includes at least one tine configured to self-bias from a linear configuration within the housing to a curved configuration outside of the housing. The electrode assembly is disposed at the distal end of the housing and includes a plurality of electrodes. The rotatable shaft extends through the housing lumen and is configured to engage the tine assembly such that rotation of the shaft transitions the at least one tine between the linear configuration and the curved configuration.
    Type: Grant
    Filed: February 4, 2022
    Date of Patent: June 6, 2023
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Allan C. Shuros, Arthur J. Foster, Keith L. Herrmann, Deepa Mahajan, Stephen J. Hahn
  • Publication number: 20230144375
    Abstract: This document discusses, among other things, systems and methods to receive cardiac electrical information of a subject, detect a premature ventricular contraction (PVC) event in a first detection window using the received cardiac electrical information, determine a count of detected PVC events in the first detection window, remove cardiac electrical information associated with the detected PVC event from the first detection window based on the determined count of detected PVC events, and detect an indication of atrial fibrillation of the subject for the first detection window using remaining cardiac electrical information in the first detection window.
    Type: Application
    Filed: January 3, 2023
    Publication date: May 11, 2023
    Inventors: Deepa Mahajan, David L. Perschbacher, Sunipa Saha
  • Publication number: 20230128521
    Abstract: A system and method for extracting a cardiac signal from a spinal signal include measuring a spinal signal at one or more electrodes that are connected to a neurostimulator and implanted within a patient's spinal canal and processing the spinal signal to extract the cardiac signal, which includes features that are representative of the patient's cardiac activity. Processing the spinal signal to extract the cardiac signal can include filtering the spinal signal, or use of model reduction schemes such as independent component analysis. The extracted cardiac signal can include a number of features that correspond to an electrocardiogram and can be used to determine the patient's heart rate and/or to detect a cardiac anomaly. Cardiac features that are determined from the cardiac signal can additionally be used to adjust parameters of the stimulation that is provided by the neurostimulator.
    Type: Application
    Filed: December 20, 2022
    Publication date: April 27, 2023
    Inventors: Rosana Esteller, Deepa Mahajan, Bhaskar Sen, Tianhe Zhang
  • Patent number: 11631478
    Abstract: Systems and methods for managing medical information storage and transmission are discussed. A data management system may include a receiver circuit to receive information about a physiological event sensed from a patient, and an event prioritizer circuit to assign a priority to the received information. A control circuit may perform data reduction of the received information according to the assigned priority. Data reduction at a higher reduction rate is performed on the received information if a lower priority is assigned than if a higher priority is assigned. The system may include an output circuit to output the received information to a user or a process, or to transmit the received information to an external device, according to the assigned priority.
    Type: Grant
    Filed: July 2, 2018
    Date of Patent: April 18, 2023
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Deepa Mahajan, David L. Perschbacher, Sunipa Saha
  • Publication number: 20230107996
    Abstract: Systems and methods for ambulatory detection of Q wave-to-T wave (QT) interval prolongation are discussed. A medical-device system comprises a controller circuit and a user interface device. The controller circuit includes a long QT syndrome (LQTS) detector that measures a QT interval from a subcutaneous cardiac signal sensed from a patient using implantable electrodes, and detects an indication of QT prolongation using the measured QT time interval and a programmable threshold received as a user input from the user interface. The control circuit can adjust device operation based on the detected indication of QT prolongation. An output unit can generate a programmable alert of the QT prolongation corresponding to the user input of the programmable threshold.
    Type: Application
    Filed: September 19, 2022
    Publication date: April 6, 2023
    Inventors: Deepa Mahajan, David L. Perschbacher, Sunipa Saha
  • Publication number: 20230040827
    Abstract: Systems and methods for managing machine-generated alert notifications of medical events detected from one or more patients are described herein. An embodiment of a data management system may receive an adjudication of a medical event episode including an episode characterization. A storage unit stores an association between one or more episode characterizations and corresponding detection algorithms for detecting a medical event having respective episode characterizations. An episode management circuit may detect from a subsequent episode, using the stored association, a medical event having an episode characterization of at least one medical event episode presented for adjudication, and schedule presenting at least a portion of the subsequent episode based on the detection.
    Type: Application
    Filed: October 10, 2022
    Publication date: February 9, 2023
    Inventors: Deepa Mahajan, David L. Perschbacher, Sunipa Saha
  • Patent number: 11571566
    Abstract: A system and method for extracting a cardiac signal from a spinal signal include measuring a spinal signal at one or more electrodes that are connected to a neurostimulator and implanted within a patient's spinal canal and processing the spinal signal to extract the cardiac signal, which includes features that are representative of the patient's cardiac activity. Processing the spinal signal to extract the cardiac signal can include filtering the spinal signal, or use of model reduction schemes such as independent component analysis. The extracted cardiac signal can include a number of features that correspond to an electrocardiogram and can be used to determine the patient's heart rate and/or to detect a cardiac anomaly. Cardiac features that are determined from the cardiac signal can additionally be used to adjust parameters of the stimulation that is provided by the neurostimulator.
    Type: Grant
    Filed: March 11, 2021
    Date of Patent: February 7, 2023
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Rosana Esteller, Deepa Mahajan, Bhaskar Sen, Tianhe Zhang
  • Patent number: 11547343
    Abstract: This document discusses, among other things, systems and methods to receive cardiac electrical information and premature ventricular contraction (PVC) information of a subject, detect atrial fibrillation (AF) of the subject using the received cardiac electrical information, and adjust AF detection using the received PVC information.
    Type: Grant
    Filed: April 10, 2020
    Date of Patent: January 10, 2023
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Deepa Mahajan, David L. Perschbacher, Sunipa Saha
  • Publication number: 20230001199
    Abstract: Systems and methods for pacing cardiac conductive tissue are described. An embodiment of a medical system includes an electrostimulation circuit to generate His-bundle pacing (HBP) pulses to stimulate a His bundle, and a cardiac event detector to detect a His-bundle activity within a time window following an atrial activity. The cardiac event detector may use a cross-chamber blanking, or an adjustable His-bundle sensing threshold, to avoid or reduce over-sensing of far-field atrial activity and inappropriate inhibition of HBP therapy. The electrostimulation circuit may deliver HBP in the presence of the His-bundle activity. The system may further recognize the detected His-bundle activity as either a FFPW or a valid inhibitory event, and deliver or withhold HBP therapy based on the recognition of the His-bundle activity.
    Type: Application
    Filed: September 8, 2022
    Publication date: January 5, 2023
    Inventors: David Arthur Casavant, David L. Perschbacher, Deepa Mahajan
  • Patent number: 11504537
    Abstract: Systems and methods for monitoring chronic over-pacing (COP) to the heart are discussed herein. In an embodiment, a system includes a receiver circuit to receive information about pacing rates of a plurality of paced heart beats, and a pacing analyzer circuit to generate a pacing rate distribution using pacing rates of the plurality of the paced heart beats. The pacing rate distribution includes a pacing rate histogram. The pacing analyzer circuit may recognize a morphological pattern from the pacing rate distribution, and detect a COP indication using the extracted feature. A programmer circuit adjusts one or more therapy parameters in response to the detected. COP indication.
    Type: Grant
    Filed: January 31, 2019
    Date of Patent: November 22, 2022
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: David L. Perschbacher, James O. Gilkerson, Sunipa Saha, Deepa Mahajan
  • Patent number: 11491337
    Abstract: Systems and methods for managing machine-generated alert notifications of medical events detected from one or more patients are described herein. An embodiment of a data management system may receive an adjudication of a medical event episode including an episode characterization. A storage unit stores an association between one or more episode characterizations and corresponding detection algorithms for detecting a medical event having respective episode characterizations. An episode management circuit may detect from a subsequent episode, using the stored association, a medical event having an episode characterization of at least one medical event episode presented for adjudication, and schedule presenting at least a portion of the subsequent episode based on the detection.
    Type: Grant
    Filed: January 29, 2019
    Date of Patent: November 8, 2022
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Deepa Mahajan, David L. Perschbacher, Sunipa Saha
  • Patent number: 11480561
    Abstract: Systems, devices, and methods for monitoring and assessing immunotherapy toxicity are discussed. An exemplary system receives physiologic information from a patient using an ambulatory medical device. In response to an immunotherapy such as CAR T-cell therapy, the system determines a toxicity indication using the received physiologic information. A therapy can be initiated or adjusted using the toxicity indication.
    Type: Grant
    Filed: July 22, 2019
    Date of Patent: October 25, 2022
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Gezheng Wen, Qi An, Pramodsingh Hirasingh Thakur, Deepa Mahajan
  • Patent number: 11458319
    Abstract: Systems and methods for pacing cardiac conductive tissue are described. An embodiment of a medical system includes an electrostimulation circuit to generate His-bundle pacing (HBP) pulses to stimulate a His bundle, and a cardiac event detector to detect a His-bundle activity within a time window following an atrial activity. The cardiac event detector may use a cross-chamber blanking, or an adjustable His-bundle sensing threshold, to avoid or reduce over-sensing of far-field atrial activity and inappropriate inhibition of HBP therapy. The electrostimulation circuit may deliver HBP in the presence of the His-bundle activity. The system may further recognize the detected His-bundle activity as either a FFPW or a valid inhibitory event, and deliver or withhold HBP therapy based on the recognition of the His-bundle activity.
    Type: Grant
    Filed: July 1, 2019
    Date of Patent: October 4, 2022
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: David Arthur Casavant, David L. Perschbacher, Deepa Mahajan
  • Publication number: 20220280095
    Abstract: Systems and methods for managing cardiac arrhythmias are discussed. A data management system receives a first detection algorithm including a detection criterion for detecting a cardiac arrhythmia. An arrhythmia detector detects arrhythmia episodes from a physiologic signal using a second detection algorithm that is different from and has a higher sensitivity for detecting the cardiac arrhythmia than the first detection algorithm. The arrhythmia detector assigns a detection indicator to each of the detected arrhythmia episodes. The detection indicator indicates a likelihood that the detected arrhythmia episode satisfies the detection criterion of the first detection algorithm. The system prioritizes the detected arrhythmia episodes according to the assigned detection indicators, and outputs the arrhythmia episodes to a user or a process according to the episode prioritization.
    Type: Application
    Filed: May 23, 2022
    Publication date: September 8, 2022
    Inventors: David L. Perschbacher, Sunipa Saha, Deepa Mahajan
  • Patent number: 11382552
    Abstract: An apparatus comprises an arrhythmia detection circuit configured to: receive a cardiac signal representative of cardiac activity of a subject; apply a first arrhythmia detection criteria to the received cardiac signal; apply, in response to the applied first arrhythmia detection criteria producing a positive indication of arrhythmia, a second arrhythmia detection criteria to the received cardiac signal, wherein the second arrhythmia detection criteria is more specific to detection of arrhythmia than the first detection criteria; detect, in response to the applied first and second arrhythmia detection criteria, a sensing event indicating one or both of the first and second arrhythmia detection criteria are susceptible to false indications of arrhythmia; and adjust, in response to a detected sensing event, sensitivity or specificity of one or both of the first and second arrhythmia detection criteria.
    Type: Grant
    Filed: July 23, 2018
    Date of Patent: July 12, 2022
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: David L. Perschbacher, Sunipa Saha, Deepa Mahajan
  • Publication number: 20220211998
    Abstract: A device for the active fixation of an implantable medical lead includes a housing, a tine assembly, an electrode, and a rotatable shaft. The housing includes a proximal end for connecting to the lead and a distal end opposite the proximal end. The housing defines a housing lumen extending between the proximal end and a recess adjacent to the distal end. The tine assembly is disposed within the housing lumen and includes at least one tine configured to self-bias from a linear configuration within the housing to a curved configuration outside of the housing. The electrode assembly is disposed at the distal end of the housing and includes a plurality of electrodes. The rotatable shaft extends through the housing lumen and is configured to engage the tine assembly such that rotation of the shaft transitions the at least one tine between the linear configuration and the curved configuration.
    Type: Application
    Filed: February 4, 2022
    Publication date: July 7, 2022
    Inventors: Allan C. Shuros, Arthur J. Foster, Keith L. Herrmann, Deepa Mahajan, Stephen J. Hahn
  • Patent number: 11357441
    Abstract: Systems and methods for managing cardiac arrhythmias are discussed. A data management system receives a first detection algorithm including a detection criterion for detecting a cardiac arrhythmia. An arrhythmia detector detects arrhythmia episodes from a physiologic signal using a second detection algorithm that is different from and has a higher sensitivity for detecting the cardiac arrhythmia than the first detection algorithm. The arrhythmia detector assigns a detection indicator to each of the detected arrhythmia episodes. The detection indicator indicates a likelihood that the detected arrhythmia episode satisfies the detection criterion of the first detection algorithm. The system prioritizes the detected arrhythmia episodes according to the assigned detection indicators, and outputs the arrhythmia episodes to a user or a process according to the episode prioritization.
    Type: Grant
    Filed: January 29, 2019
    Date of Patent: June 14, 2022
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: David L. Perschbacher, Sunipa Saha, Deepa Mahajan
  • Patent number: 11318303
    Abstract: A device for the active fixation of an implantable medical lead includes a housing, a tine assembly, an electrode, and a rotatable shaft. The housing includes a proximal end for connecting to the lead and a distal end opposite the proximal end. The housing defines a housing lumen extending between the proximal end and a recess adjacent to the distal end. The tine assembly is disposed within the housing lumen and includes at least one tine configured to self-bias from a linear configuration within the housing to a curved configuration outside of the housing. The electrode assembly is disposed at the distal end of the housing and includes a plurality of electrodes. The rotatable shaft extends through the housing lumen and is configured to engage the tine assembly such that rotation of the shaft transitions the at least one tine between the linear configuration and the curved configuration.
    Type: Grant
    Filed: April 19, 2019
    Date of Patent: May 3, 2022
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Allan C. Shuros, Arthur J. Foster, Keith L. Herrmann, Deepa Mahajan, Stephen J. Hahn
  • Patent number: 11298068
    Abstract: Systems and methods for detecting cardiac arrhythmias such as atrial tachyarrhythmia (AT) are discussed. An exemplary system includes a ventricular beat analyzer circuit to detect ventricular beats and assess ventricular activity, such as to evaluate a ventricular rate stability. The system includes an arrhythmia detector circuit to detect respective AT indications in distinct time periods using portions of received physiologic information during the distinct time periods. A control circuit can monitor the ventricular beats on a beat-by-beat basis, in response to the detected ventricular beats satisfying an instability condition, trigger AT detections during the distinct time periods and withhold AT detection in a subsequent time period if no AT is detected in the present time period. An AT characteristic may be generated using the detected AT indications. A therapy may be delivered in accordance with the AT characteristic.
    Type: Grant
    Filed: December 6, 2019
    Date of Patent: April 12, 2022
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: David L. Perschbacher, Deepa Mahajan, Sunipa Saha