Patents by Inventor Deepak Khuntia

Deepak Khuntia has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240100361
    Abstract: Methods for treating tumors by administering FLASH radiation and a therapeutic agent to a patient with cancer are disclosed. The methods provide the dual benefits of anti-tumor efficacy plus normal tissue protection when combining therapeutic agents with FLASH radiation to treat cancer patients. The methods described herein also allow for the classification of patients into groups for receiving optimized radiation treatment in combination with a therapeutic agent based on patient-specific biomarker signatures. Also provided are radiation treatment planning methods and systems incorporating FLASH radiation and therapeutic agents.
    Type: Application
    Filed: August 24, 2023
    Publication date: March 28, 2024
    Applicant: Varian Medical Systems, Inc.
    Inventors: Renate PARRY, Eric ABEL, Swati GIRDHANI, Stanley MANSFIELD, Patrick KUPELIAN, Deepak KHUNTIA
  • Publication number: 20240075314
    Abstract: A computing system comprising a central processing unit (CPU), and memory coupled to the CPU and having stored therein instructions that, when executed by the computing system, cause the computing system to execute operations to generate a radiation treatment plan. The operations include accessing a minimum prescribed dose to be delivered into and across the target, determining a number of beams and directions of the beams, and determining a beam energy for each of the beams, wherein the number of beams, the directions of the beams, and the beam energy for each of the beams are determined such that the entire target receives the minimum prescribed dose. The operations further include prescribing a dose rate and optimizing dose rate constraints for FLASH therapy, and displaying a dose rate map of the FLASH therapy.
    Type: Application
    Filed: November 1, 2023
    Publication date: March 7, 2024
    Applicants: Varian Medical Systems, Inc., Siemens Healthineers International AG, Varian Medical Systems Particle Therapy GmbH
    Inventors: Christel SMITH, Timo KOPONEN, Reynald VANDERSTRAETEN, Anthony MAGLIARI, Eric ABEL, Jessica PEREZ, Michael FOLKERTS, Deepak KHUNTIA
  • Patent number: 11865364
    Abstract: A computing system comprising a central processing unit (CPU), and memory coupled to the CPU and having stored therein instructions that, when executed by the computing system, cause the computing system to execute operations to generate a radiation treatment plan. The operations include accessing a minimum prescribed dose to be delivered into and across the target, determining a number of beams and directions of the beams, and determining a beam energy for each of the beams, wherein the number of beams, the directions of the beams, and the beam energy for each of the beams are determined such that the entire target receives the minimum prescribed dose. The operations further include prescribing a dose rate and optimizing dose rate constraints for FLASH therapy, and displaying a dose rate map of the FLASH therapy.
    Type: Grant
    Filed: December 22, 2022
    Date of Patent: January 9, 2024
    Assignees: Varian Medical Systems, Inc., Varian Medical Systems Particle Therapy GmbH, Siemens Healthineers International AG
    Inventors: Christel Smith, Timo Koponen, Reynald Vanderstraeten, Anthony Magliari, Eric Abel, Jessica Perez, Michael Folkerts, Deepak Khuntia
  • Patent number: 11771920
    Abstract: Methods for treating tumors by administering FLASH radiation and a therapeutic agent to a patient with cancer are disclosed. The methods provide the dual benefits of anti-tumor efficacy plus normal tissue protection when combining therapeutic agents with FLASH radiation to treat cancer patients. The methods described herein also allow for the classification of patients into groups for receiving optimized radiation treatment in combination with a therapeutic agent based on patient-specific biomarker signatures. Also provided are radiation treatment planning methods and systems incorporating FLASH radiation and therapeutic agents.
    Type: Grant
    Filed: September 27, 2021
    Date of Patent: October 3, 2023
    Assignee: Varian Medical Systems, Inc.
    Inventors: Renate Parry, Eric Abel, Swati Girdhani, Stanley Mansfield, Patrick Kupelian, Deepak Khuntia
  • Publication number: 20230211178
    Abstract: A computing system comprising a central processing unit (CPU), and memory coupled to the CPU and having stored therein instructions that, when executed by the computing system, cause the computing system to execute operations to generate a radiation treatment plan. The operations include accessing a minimum prescribed dose to be delivered into and across the target, determining a number of beams and directions of the beams, and determining a beam energy for each of the beams, wherein the number of beams, the directions of the beams, and the beam energy for each of the beams are determined such that the entire target receives the minimum prescribed dose. The operations further include prescribing a dose rate and optimizing dose rate constraints for FLASH therapy, and displaying a dose rate map of the FLASH therapy.
    Type: Application
    Filed: December 22, 2022
    Publication date: July 6, 2023
    Inventors: Christel SMITH, Timo KOPONEN, Reynald VANDERSTRAETEN, Anthony MAGLIARI, Eric ABEL, Jessica PEREZ, Michael FOLKERTS, Deepak KHUNTIA
  • Publication number: 20230125147
    Abstract: A dose rate-volume histogram can be generated for a target volume. The dose rate-volume histogram can be stored in computer system memory and used to generate a radiation treatment plan. The radiation treatment plan can be used as the basis for treating a patient using a radiation treatment system.
    Type: Application
    Filed: December 23, 2022
    Publication date: April 27, 2023
    Inventors: Deepak KHUNTIA, Edward VERTATSCHITSCH, Eric ABEL, Anthony MAGLIARI, Christel SMITH
  • Patent number: 11554271
    Abstract: A computing system comprising a central processing unit (CPU), and memory coupled to the CPU and having stored therein instructions that, when executed by the computing system, cause the computing system to execute operations to generate a radiation treatment plan. The operations include accessing a minimum prescribed dose to be delivered into and across the target, determining a number of beams and directions of the beams, and determining a beam energy for each of the beams, wherein the number of beams, the directions of the beams, and the beam energy for each of the beams are determined such that the entire target receives the minimum prescribed dose. The operations further include prescribing a dose rate and optimizing dose rate constraints for FLASH therapy, and displaying a dose rate map of the FLASH therapy.
    Type: Grant
    Filed: January 12, 2021
    Date of Patent: January 17, 2023
    Assignees: Varian Medical Systems, Inc, Varian Medical Systems Particle Therapy GMBH & Co. KG, Varian Medical Systems International AG
    Inventors: Christel Smith, Timo Koponen, Reynald Vanderstraeten, Anthony Magliari, Eric Abel, Jessica Perez, Michael Folkerts, Deepak Khuntia
  • Patent number: 11534625
    Abstract: A dose rate-volume histogram can be generated for a target volume. The dose rate-volume histogram can be stored in computer system memory and used to generate a radiation treatment plan. The radiation treatment plan can be used as the basis for treating a patient using a radiation treatment system.
    Type: Grant
    Filed: September 24, 2020
    Date of Patent: December 27, 2022
    Assignee: Varian Medical Systems, Inc.
    Inventors: Deepak Khuntia, Edward Vertatschitsch, Eric Abel, Anthony Magliari, Christel Smith
  • Publication number: 20220199221
    Abstract: These teachings include accessing energy dosing information along with at least one quality-of-care model that correlates at least one categorical energy-based treatment patient quality-of-care outcome with at least one resultant energy-based treatment description. The model can be created via probabilistic mapping that maps patient impact information to dose impartation information to infer non-biological impact to a patient. A patient treatment plan can be optimized for a particular patient as a function of the foregoing information to provide corresponding resultant benefit trade-of evaluation information. This benefit trade-off evaluation information can be displayed to a user to permit the user to explore the benefit trade-off evaluation information to thereby identify a resultant energy-based treatment plan having a selected balance between dosing a treatment target with energy and a quality-of-care impact on the particular patient.
    Type: Application
    Filed: December 21, 2020
    Publication date: June 23, 2022
    Inventors: Deepak Khuntia, Corey E. Zankowski, Paritosh Ambekar, Alexander E. Maslowski
  • Publication number: 20220008750
    Abstract: Methods for treating tumors by administering FLASH radiation and a therapeutic agent to a patient with cancer are disclosed. The methods provide the dual benefits of anti-tumor efficacy plus normal tissue protection when combining therapeutic agents with FLASH radiation to treat cancer patients. The methods described herein also allow for the classification of patients into groups for receiving optimized radiation treatment in combination with a therapeutic agent based on patient-specific biomarker signatures. Also provided are radiation treatment planning methods and systems incorporating FLASH radiation and therapeutic agents.
    Type: Application
    Filed: September 27, 2021
    Publication date: January 13, 2022
    Applicant: VARIAN MEDICAL SYSTEMS, INC.
    Inventors: Renate PARRY, Eric ABEL, Swati GIRDHANI, Stanley MANSFIELD, Patrick KUPELIAN, Deepak KHUNTIA
  • Patent number: 11173325
    Abstract: Methods for treating tumors by administering FLASH radiation and a therapeutic agent to a patient with cancer are disclosed. The methods provide the dual benefits of anti-tumor efficacy plus normal tissue protection when combining therapeutic agents with FLASH radiation to treat cancer patients. The methods described herein also allow for the classification of patients into groups for receiving optimized radiation treatment in combination with a therapeutic agent based on patient-specific biomarker signatures. Also provided are radiation treatment planning methods and systems incorporating FLASH radiation and therapeutic agents.
    Type: Grant
    Filed: July 20, 2018
    Date of Patent: November 16, 2021
    Assignee: Varian Medical Systems, Inc.
    Inventors: Renate Parry, Eric Abel, Swati Girdhani, Stanley Mansfield, Patrick Kupelian, Deepak Khuntia
  • Patent number: 11116995
    Abstract: A dose rate-volume histogram is generated for a target volume. The dose rate-volume histogram can be stored in computer system memory and used to generate a radiation treatment plan. An irradiation time-volume histogram can also be generated for the target volume. The irradiation time-volume histogram can be stored in computer system memory and used to generate the radiation treatment plan.
    Type: Grant
    Filed: March 6, 2019
    Date of Patent: September 14, 2021
    Assignee: Varian Medical Systems, Inc.
    Inventors: Deepak Khuntia, Edward Vertatschitsch, Eric Abel, Anthony Magliari, Christel Smith
  • Publication number: 20210128946
    Abstract: A computing system comprising a central processing unit (CPU), and memory coupled to the CPU and having stored therein instructions that, when executed by the computing system, cause the computing system to execute operations to generate a radiation treatment plan. The operations include accessing a minimum prescribed dose to be delivered into and across the target, determining a number of beams and directions of the beams, and determining a beam energy for each of the beams, wherein the number of beams, the directions of the beams, and the beam energy for each of the beams are determined such that the entire target receives the minimum prescribed dose. The operations further include prescribing a dose rate and optimizing dose rate constraints for FLASH therapy, and displaying a dose rate map of the FLASH therapy.
    Type: Application
    Filed: January 12, 2021
    Publication date: May 6, 2021
    Inventors: Christel SMITH, Timo KOPONEN, Reynald VANDERSTRAETEN, Anthony MAGLIARI, Eric ABEL, Jessica PEREZ, Michael FOLKERTS, Deepak KHUNTIA
  • Publication number: 20210113856
    Abstract: In various embodiments, a radiation therapy method can include loading a planning image of a target in a human. In addition, the position of the target can be monitored. A computation can be made of an occurrence of substantial alignment between the position of the target and the target of the planning image. Furthermore, after the computing, a beam of radiation is triggered to deliver a dosage to the target in a short period of time (e.g., less than a second).
    Type: Application
    Filed: December 23, 2020
    Publication date: April 22, 2021
    Inventors: Christel SMITH, Corey ZANKOWSKI, Jan Hein TIMMER, Wolfgang KAISSL, Deepak KHUNTIA, Eric ABEL, Josh STAR-LACK, Camille NOEL
  • Patent number: 10918886
    Abstract: A computing system comprising a central processing unit (CPU), and memory coupled to the CPU and having stored therein instructions that, when executed by the computing system, cause the computing system to execute operations to generate a radiation treatment plan. The operations include accessing a minimum prescribed dose to be delivered into and across the target, determining a number of beams and directions of the beams, and determining a beam energy for each of the beams, wherein the number of beams, the directions of the beams, and the beam energy for each of the beams are determined such that the entire target receives the minimum prescribed dose. The operations further include prescribing a dose rate and optimizing dose rate constraints for FLASH therapy, and displaying a dose rate map of the FLASH therapy.
    Type: Grant
    Filed: June 10, 2019
    Date of Patent: February 16, 2021
    Assignees: Varian Medical Systems, Inc., Varian Medical Systems International AG, Varian Medical Systems Particle Therapy GMBH
    Inventors: Christel Smith, Timo Koponen, Reynald Vanderstraeten, Anthony Magliari, Eric Abel, Jessica Perez, Michael Folkerts, Deepak Khuntia
  • Patent number: 10898730
    Abstract: In various embodiments, a radiation therapy method can include loading a planning image of a target in a human. In addition, the position of the target can be monitored. A computation can be made of an occurrence of substantial alignment between the position of the target and the target of the planning image. Furthermore, after the computing, a beam of radiation is triggered to deliver a dosage to the target in a short period of time (e.g., less than a second).
    Type: Grant
    Filed: December 31, 2018
    Date of Patent: January 26, 2021
    Assignees: Varian Medical Systems International AG, Varian Medical Systems, Inc
    Inventors: Christel Smith, Corey Zankowski, Jan Timmer, Wolfgang Kaissl, Deepak Khuntia, Eric Abel, Josh Star-Lack, Camille Noel
  • Publication number: 20210016108
    Abstract: A dose rate-volume histogram can be generated for a target volume. The dose rate-volume histogram can be stored in computer system memory and used to generate a radiation treatment plan. The radiation treatment plan can be used as the basis for treating a patient using a radiation treatment system.
    Type: Application
    Filed: September 24, 2020
    Publication date: January 21, 2021
    Inventors: Deepak KHUNTIA, Edward VERTATSCHITSCH, Eric ABEL, Anthony MAGLIARI, Christel SMITH
  • Publication number: 20200384289
    Abstract: A computing system comprising a central processing unit (CPU), and memory coupled to the CPU and having stored therein instructions that, when executed by the computing system, cause the computing system to execute operations to generate a radiation treatment plan. The operations include accessing a minimum prescribed dose to be delivered into and across the target, determining a number of beams and directions of the beams, and determining a beam energy for each of the beams, wherein the number of beams, the directions of the beams, and the beam energy for each of the beams are determined such that the entire target receives the minimum prescribed dose. The operations further include prescribing a dose rate and optimizing dose rate constraints for FLASH therapy, and displaying a dose rate map of the FLASH therapy.
    Type: Application
    Filed: June 10, 2019
    Publication date: December 10, 2020
    Inventors: Christel SMITH, Timo KOPONEN, Reynald VANDERSTRAETEN, Anthony MAGLIARI, Eric ABEL, Jessica PEREZ, Michael FOLKERTS, Deepak KHUNTIA
  • Patent number: 10814144
    Abstract: A dose rate-volume histogram can be generated for a target volume. The dose rate-volume histogram can be stored in computer system memory and used to generate a radiation treatment plan. The radiation treatment plan can be used as the basis for treating a patient using a radiation treatment system.
    Type: Grant
    Filed: March 6, 2019
    Date of Patent: October 27, 2020
    Assignee: Varian Medical Systems, Inc.
    Inventors: Deepak Khuntia, Edward Vertatschitsch, Eric Abel, Anthony Magliari, Christel Smith
  • Publication number: 20200282231
    Abstract: A dose rate-volume histogram is generated for a target volume. The dose rate-volume histogram can be stored in computer system memory and used to generate a radiation treatment plan. An irradiation time-volume histogram can also be generated for the target volume. The irradiation time-volume histogram can be stored in computer system memory and used to generate the radiation treatment plan.
    Type: Application
    Filed: March 6, 2019
    Publication date: September 10, 2020
    Inventors: Deepak KHUNTIA, Edward VERTATSCHITSCH, Eric ABEL, Anthony MAGLIARI, Christel SMITH