Patents by Inventor Deepak Ramappa

Deepak Ramappa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20060172443
    Abstract: The present invention provides a method detecting metal silicide defects in a microelectronic device. The method comprises positioning (110) a portion of a semiconductor substrate in a field of view of an inspection tool. The method also comprises producing (120) a voltage contrast image of the portion, wherein the image is obtained using a collection field that is stronger than an incident field. The method further comprises using (130) the voltage contrast image to determine a metal silicide defect in a microelectronic device. Other aspects of the present invention include an inspection system (200) for detecting metal silicide defects and a method of manufacturing an integrated circuit (300).
    Type: Application
    Filed: February 2, 2005
    Publication date: August 3, 2006
    Applicant: Texas Instruments Incorporated
    Inventor: Deepak Ramappa
  • Publication number: 20060113499
    Abstract: The present invention provides a system for removing organic contaminants (216) from a copper seed layer that has been deposited on a semiconductor substrate (206). The present invention provides a housing (204) to enclose the semiconductor substrate within. An ultraviolet radiation source (210) is disposed within the housing. A treatment medium (208) is also provided within the housing. The semiconductor substrate is enclosed within the housing and exposed to the treatment medium. The ultraviolet radiation source exposes the semiconductor substrate to ultraviolet radiation, desorbing the contaminants from the seed layer.
    Type: Application
    Filed: January 17, 2006
    Publication date: June 1, 2006
    Inventors: Aaron Frank, David Gonzalez, John DeGenova, Srinivas Raghavan, Deepak Ramappa
  • Publication number: 20060099804
    Abstract: Methods (102) are presented for protecting copper structures (26) from corrosion in the fabrication of semiconductor devices (2), wherein a thin semiconductor or copper-semiconductor alloy corrosion protection layer (30) is formed on an exposed surface (26a) of a copper structure (26) prior to performance of metrology operations (206), so as to inhibit corrosion of the copper structure (26). All or a portion of the corrosion protection layer (30) is then removed (214) in forming an opening in an overlying dielectric (44) in a subsequent interconnect layer.
    Type: Application
    Filed: November 10, 2004
    Publication date: May 11, 2006
    Inventors: Deepak Ramappa, Mona Eissa, Christopher Borst, Ting Tsui
  • Patent number: 7015568
    Abstract: The present invention provides a system for removing organic contaminants (216) from a copper seed layer that has been deposited on a semiconductor substrate (206). The present invention provides a housing (204) to enclose the semiconductor substrate within. An ultraviolet radiation source (210) is disposed within the housing. A treatment medium (208) is also provided within the housing. The semiconductor substrate is enclosed within the housing and exposed to the treatment medium. The ultraviolet radiation source exposes the semiconductor substrate to ultraviolet radiation, desorbing the contaminants from the seed layer.
    Type: Grant
    Filed: August 21, 2003
    Date of Patent: March 21, 2006
    Assignee: Texas Instruments Incorporated
    Inventors: Aaron Frank, David Gonzalez, John DeGenova, Srinavas Raghavan, Deepak A. Ramappa
  • Publication number: 20050274805
    Abstract: The present invention defines a system (100) for detecting copper contamination within a semiconductor manufacturing process. According to the present invention, a semiconductor wafer (102) is transferred (108) from a semiconductor manufacturing component (104), which may have exposed the wafer to copper contamination, to a measurement system (106). The measurement system measures an electrical value at a plurality of locations along a surface of the wafer, prior to and after exposure of the surface to an activation system (112). The activation system is provided to cause any copper contamination along the surface to form a precipitate thereon. An analysis component (110) is provided to receive electrical value and location information from the measurement system and to identify, from the measurements, the presence and location of copper contamination along the semiconductor wafer surface.
    Type: Application
    Filed: May 26, 2004
    Publication date: December 15, 2005
    Inventor: Deepak Ramappa
  • Patent number: 6963206
    Abstract: The present invention provides a system and method for evaluating gate oxide integrity in a semiconductor wafer. The system may include: a semiconductor wafer; a layer of gate oxide on the semiconductor wafer; a layer of polysilicon on the gate oxide; an electron beam microscope with adjustable energy levels, wherein the electron beam is directed at the semiconductor wafer; an electron beam inspection tool used to detect passive voltage contrasts within the gate oxide layer. The system may also include a measuring tool for measuring an electrical current level of the semiconductor substrate. The system may also include an electrical ground connected to the semiconductor wafer. The system may also include the energy levels vary from about 600 eV to 5000 eV.
    Type: Grant
    Filed: September 21, 2004
    Date of Patent: November 8, 2005
    Assignee: Texas Instruments Incorporated
    Inventor: Deepak A. Ramappa
  • Publication number: 20050164496
    Abstract: The present invention provides an electroplating process and a method for manufacturing an integrated circuit. The electroplating process includes, among other steps, placing a substrate 290 in an enclosure 200 being substantially devoid of unwanted contaminants and forming a material layer 310 over the substrate 290 within the enclosure 200, the enclosure 200 still being substantially devoid of the unwanted contaminants. The electroplating process further includes forming a thin layer of oxide 410 over the material layer 310 within the enclosure 200, the enclosure 200 still being substantially devoid of the unwanted contaminants during the forming the thin layer of oxide 410.
    Type: Application
    Filed: January 28, 2004
    Publication date: July 28, 2005
    Applicant: Texas Instruments, Incorporated
    Inventors: Richard Guldi, Deepak Ramappa
  • Patent number: 6869873
    Abstract: A silane passivation process, carried out in-situ together with the formation of a subsequent dielectric film, converts the exposed Cu surfaces of a Cu interconnect structure, to copper silicide. The copper silicide suppresses Cu diffusion and electromigration and serves as a barrier material in regions where contact to further conductive material is made. An entire copper surface of a copper interconnect structure may be silicided or a local portion of the surface silicided after an opening is formed in an overlying dielectric to expose a portion of the copper surface.
    Type: Grant
    Filed: June 30, 2003
    Date of Patent: March 22, 2005
    Assignee: Agere Systems Inc.
    Inventors: Robert Wayne Bradshaw, Daniele Gilkes, Sailesh Mansinh Merchant, Deepak A. Ramappa, Kurt George Steiner
  • Publication number: 20050042886
    Abstract: The present invention provides a system for removing organic contaminants (216) from a copper seed layer that has been deposited on a semiconductor substrate (206). The present invention provides a housing (204) to enclose the semiconductor substrate within. An ultraviolet radiation source (210) is disposed within the housing. A treatment medium (208) is also provided within the housing. The semiconductor substrate is enclosed within the housing and exposed to the treatment medium. The ultraviolet radiation source exposes the semiconductor substrate to ultraviolet radiation, desorbing the contaminants from the seed layer.
    Type: Application
    Filed: August 21, 2003
    Publication date: February 24, 2005
    Inventors: Aaron Frank, David Gonzalez, John DeGenova, Srinivas Raghavan, Deepak Ramappa
  • Publication number: 20050037525
    Abstract: The present invention provides a system and method for evaluating gate oxide integrity in a semiconductor wafer. The system may include: a semiconductor wafer; a layer of gate oxide on the semiconductor wafer; a layer of polysilicon on the gate oxide; an electron beam microscope with adjustable energy levels, wherein the electron beam is directed at the semiconductor wafer; an electron beam inspection tool used to detect passive voltage contrasts within the gate oxide layer. The system may also include a measuring tool for measuring an electrical current level of the semiconductor substrate. The system may also include an electrical ground connected to the semiconductor wafer. The system may also include the energy levels vary from about 600 eV to 5000 eV.
    Type: Application
    Filed: September 21, 2004
    Publication date: February 17, 2005
    Inventor: Deepak Ramappa
  • Patent number: 6812050
    Abstract: The present invention provides a system and method for evaluating gate oxide integrity in a semiconductor wafer. The system may include: a semiconductor wafer; a layer of gate oxide on the semiconductor wafer; a layer of polysilicon on the gate oxide; an electron beam microscope with adjustable energy levels, wherein the electron beam is directed at the semiconductor wafer; an electron beam inspection tool used to detect passive voltage contrasts within the gate oxide layer. The system may also include a measuring tool for measuring an electrical current level of the semiconductor substrate. The system may also include an electrical ground connected to the semiconductor wafer. The system may also include the energy levels vary from about 600 eV to 5000 eV.
    Type: Grant
    Filed: June 13, 2003
    Date of Patent: November 2, 2004
    Assignee: Texas Instruments Incorporated
    Inventor: Deepak A. Ramappa
  • Publication number: 20040097075
    Abstract: A silane passivation process, carried out in-situ together with the formation of a subsequent dielectric film, converts the exposed Cu surfaces of a Cu interconnect structure, to copper silicide. The copper silicide suppresses Cu diffusion and electromigration and serves as a barrier material in regions where contact to further conductive material is made. An entire copper surface of a copper interconnect structure may be silicided or a local portion of the surface silicided after an opening is formed in an overlying dielectric to expose a portion of the copper surface.
    Type: Application
    Filed: June 30, 2003
    Publication date: May 20, 2004
    Inventors: Robert Wayne Bradshaw, Daniele Gilkes, Sailesh Mansinh Merchant, Deepak A. Ramappa, Kurt George Steiner
  • Patent number: 6607927
    Abstract: A method for determining copper contamination on a semiconductor wafer is disclosed. The minority carrier diffusion length is measured, then the wafer is activated by the application of optical or thermal energy. Likely the wafer is also contaminated with iron and thus it is necessary to separate the diffusion length effects caused by the iron from those caused by the copper, that is, both copper and iron contaminants cause a reduction in the minority carrier diffusion length. The applied energy causes the iron-boron pairs to dissociate and also causes the copper to form a metastable copper silicide state. After about 24 to 36 hours, the iron-boron pairs reform and therefore the iron contaminants no longer influence the diffusion length. At this point the diffusion length is measured again, which values are due solely to the copper contamination, since the copper remains in the silicide state. The copper contamination can be determined from the measured diffusion length values.
    Type: Grant
    Filed: September 28, 2001
    Date of Patent: August 19, 2003
    Assignee: Agere Systems, Inc.
    Inventors: Deepak A. Ramappa, Damon Keith DeBusk
  • Patent number: 6573183
    Abstract: A method and apparatus for the electroplating deposition of a metal onto a semiconductor wafer surface (29), including vibrationally scrubbing the wafer surface (29) during an electroplating process. At least one transducer (32) is mounted to a wall (33) of an electroplating tool chamber (22). The transducer (32) intermittently delivers sonic energy pulses lasting for one to two seconds to the electroplating solution during the electroplating process.
    Type: Grant
    Filed: September 28, 2001
    Date of Patent: June 3, 2003
    Assignee: Agere Systems Inc.
    Inventors: Sailesh Mansinh Merchant, Minseok Oh, Deepak A. Ramappa
  • Publication number: 20030064586
    Abstract: A method and apparatus for the electroplating deposition of a metal onto a semiconductor wafer surface (29), including vibrationally scrubbing the wafer surface (29) during an electroplating process. At least one transducer (32) is mounted to a wall (33) of an electroplating tool chamber (22). The transducer (32) intermittently delivers sonic energy pulses lasting for one to two seconds to the electroplating solution during the electroplating process.
    Type: Application
    Filed: September 28, 2001
    Publication date: April 3, 2003
    Inventors: Sailesh Mansinh Merchant, Minseok Oh, Deepak A. Ramappa
  • Publication number: 20030064533
    Abstract: A method for determining copper contamination on a semiconductor wafer is disclosed. The minority carrier diffusion length is measured, then the wafer is activated by the application of optical or thermal energy. Likely the wafer is also contaminated with iron and thus it is necessary to separate the diffusion length effects caused by the iron from those caused by the copper, that is, both copper and iron contaminants cause a reduction in the minority carrier diffusion length. The applied energy causes the iron-boron pairs to dissociate and also causes the copper to form a metastable copper silicide state. After about 24 to 36 hours, the iron-boron pairs reform and therefore the iron contaminants no longer influence the diffusion length. At this point the diffusion length is measured again, which values are due solely to the copper contamination, since the copper remains in the silicide state. The copper contamination can be determined from the measured diffusion length values.
    Type: Application
    Filed: September 28, 2001
    Publication date: April 3, 2003
    Inventors: Deepak A. Ramappa, Damon Keith DeBusk