Patents by Inventor Delbert J. Larson

Delbert J. Larson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8063390
    Abstract: An electron cooling system and method for increasing the phase space intensity and overall intensity of ion beams in multiple overlap regions, including a vacuum chamber to allow a single electron beam to be merged and separated with multiple ion beams, an electron supply device including a cathode to generate the electron beam, an electron collector device including a collection plate to collect the electron beam, multiple magnetic field generation devices to guide the electrons on their desired trajectories, and multiple electrodes to set the velocity of the electron beam independently in each overlap region. By overlapping the electron and ion beams, thermal energy is transferred from the ion beams to the electron beam, which allows an increase in the phase space density and overall density of the ion beams.
    Type: Grant
    Filed: March 3, 2010
    Date of Patent: November 22, 2011
    Inventor: Delbert J. Larson
  • Publication number: 20110215236
    Abstract: An electron cooling system and method for increasing the phase space intensity and overall intensity of ion beams in multiple overlap regions, including a vacuum chamber to allow a single electron beam to be merged and separated with multiple ion beams, an electron supply device including a cathode to generate the electron beam, an electron collector device including a collection plate to collect the electron beam, multiple magnetic field generation devices to guide the electrons on their desired trajectories, and multiple electrodes to set the velocity of the electron beam independently in each overlap region. By overlapping the electron and ion beams, thermal energy is transferred from the ion beams to the electron beam, which allows an increase in the phase space density and overall density of the ion beams.
    Type: Application
    Filed: March 3, 2010
    Publication date: September 8, 2011
    Inventor: Delbert J. Larson
  • Publication number: 20110215720
    Abstract: A particle beam, segmented electron gun, segmented electron beam and electron collector system and method to achieve low power loss, segmented current control, and segmented energy control in electron beams, including a vacuum chamber to provide a region substantially free of background gas and allow for electron transport, an electron supply device including a segmented cathode to generate the segmented electron beam, an electrode with a grid conducting structure located in front of the segmented cathode and biased with respect to the segmented cathode in order to accelerate electrons away from the segmented cathode and control the current and energy of each electron beam segment, magnetic field production devices such as solenoidal and torroidal wire windings and permanent magnet material to produce magnetic fields to guide the segmented electron beam and to contain neutralizing-background-ions and an electron collector device including electrodes with a grid conducting structure and outer conducting shell
    Type: Application
    Filed: March 3, 2010
    Publication date: September 8, 2011
    Inventor: Delbert J. Larson
  • Patent number: 7501640
    Abstract: A low energy electron cooling system and method for increasing the phase space intensity and overall intensity of low energy ion beams, including a vacuum chamber to allow electron beam and ion beam merging and separation, a cathode to generate the electron beam, a collector to collect the electron beam, magnetic field generation devices to guide the electrons on their desired trajectories, and electrodes to accelerate and decelerate the electron beam. By overlapping the electron and ion beams, thermal energy is transferred from the ion beam to the electron beam, which allows an increase in the phase space density and overall density of the ion beams. Advantageously, the low energy electron cooling system uses electrodes to set up electrostatic potentials that trap non-beam neutralizing-background-ions longitudinally within the electron cooling region and solenoidal fields that trap the non-beam neutralizing-background-ions radially within the electron cooling region.
    Type: Grant
    Filed: February 24, 2007
    Date of Patent: March 10, 2009
    Inventor: Delbert J. Larson
  • Publication number: 20080203923
    Abstract: A low energy electron cooling system and method for increasing the phase space intensity and overall intensity of low energy ion beams, including a vacuum chamber to allow electron beam and ion beam merging and separation, a cathode to generate the electron beam, a collector to collect the electron beam, magnetic field generation devices to guide the electrons on their desired trajectories, and electrodes to accelerate and decelerate the electron beam. By overlapping the electron and ion beams, thermal energy is transferred from the ion beam to the electron beam, which allows an increase in the phase space density and overall density of the ion beams. Advantageously, the low energy electron cooling system uses electrodes to set up electrostatic potentials that trap non-beam neutralizing-background-ions longitudinally within the electron cooling region and solenoidal fields that trap the non-beam neutralizing-background-ions radially within the electron cooling region.
    Type: Application
    Filed: February 24, 2007
    Publication date: August 28, 2008
    Inventor: Delbert J. Larson
  • Publication number: 20080205573
    Abstract: A cellular electron cooled storage ring system and method for achieving particle-fusion based energy, including a vacuum chamber to allow electron beam and ion beam merging and separation, cathodes to generate the electron beams, collectors to collect the electron beams, and magnetic field generation devices to guide the electrons and ions on their desired trajectories as well as contain neutralizing particles. By overlapping the electron and ion beams, thermal energy is transferred from the ion beams to the electron beams, which allows the invention to overcome particle losses due to resonances, scattering and heating of the ion beams. Advantageously, ions are accelerated to an energy that is near optimum for fusion reactions to occur, and uses electron energies that maintain this advantageous situation. Advantageously, the recirculation of ions that do not fuse or scatter at too large of an angle is allowed, giving such ions additional chances to participate in a desired fusion reaction.
    Type: Application
    Filed: February 24, 2007
    Publication date: August 28, 2008
    Inventor: Delbert J. Larson
  • Patent number: 5854531
    Abstract: A storage ring system and method for high-yield nuclear production of neutrons, isotopes and photons, include a particle supply for generating a beam of projectile or reaction particles, a closed storage ring for containing and recycling the projectile particles, an electron cooling system for stabilizing the projectile particles, and a target for initiating nuclear reactions with the projectile particles so as to generate the desired end-products, with improved efficiency and safety. The invention also provides a plurality of dipoles and/or trim magnets selectively situated around the ring to guide the projectile particles as they circulate within the system. Substantially trapped in the closed storage ring, the particle beam is recirculated inside the storage ring for repeated exposure to the target, until the particles either favorably react with the target or are lost through scattering.
    Type: Grant
    Filed: May 30, 1997
    Date of Patent: December 29, 1998
    Assignee: Science Applications International Corporation
    Inventors: Phillip E. Young, Delbert J. Larson