Patents by Inventor Delmar L. Barker

Delmar L. Barker has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8038795
    Abstract: A precursor chiral nanotube with a specified chirality is grown using an epitaxial process and then cloned. A substrate is provided of crystal material having sheet lattice properties complementary to the lattice properties of the selected material for the nanotube. A cylindrical surface(s) having a diameter of 1 to 100 nanometers are formed as a void in the substrate or as crystal material projecting from the substrate with an orientation with respect to the axes of the crystal substrate corresponding to the selected chirality. A monocrystalline film of the selected material is epitaxially grown on the cylindrical surface that takes on the sheet lattice properties and orientation of the crystal substrate to form a precursor chiral nanotube. A catalytic particle is placed on the precursor chiral nanotube and atoms of the selected material are dissolved into the catalytic particle to clone a chiral nanotube from the precursor chiral nanotube.
    Type: Grant
    Filed: July 16, 2008
    Date of Patent: October 18, 2011
    Assignee: Raytheon Company
    Inventors: Delmar L. Barker, William R. Owens
  • Patent number: 8026496
    Abstract: An acoustic crystal structure includes defect cavities that concentrate the driving pressure from applied sound waves into the cavities to cavitate gas bubbles in a liquid to produce sonoluminescence. This device may be used to study sonoluminescence or cavitation or to perform sonochemistry, nuclear fusion etc. in the cavities. A waveguide may be operatively coupled to the acoustic crystal to extract, collect and route a band of electromagnetic (EM) radiation around a specified source wavelength to an output port for emission by an antenna to provide an EM source. The waveguide may, for example, be a photonic crystal defect waveguide, a photonic crystal optical fiber or Sommerfeld waveguide. The marriage of the sonoluminescence phenomena with an acoustic crystal and embedded waveguide provides for an efficient source of narrow or broad band IR or THz radiation.
    Type: Grant
    Filed: July 2, 2009
    Date of Patent: September 27, 2011
    Assignee: Raytheon Company
    Inventors: Delmar L. Barker, William R. Owens
  • Patent number: 7985965
    Abstract: A quantum computing device and method employs qubit arrays of entangled states using negative refractive index lenses. A qubit includes a pair of neutral atoms separated by or disposed on opposite sides of a negative refractive index lens. The neutral atoms and negative refractive index lens are selectively energized and/or activated to cause entanglement of states of the atoms. The quantum computing device enjoys a novel architecture that is workable and scalable in terms of size and wavelength.
    Type: Grant
    Filed: March 29, 2007
    Date of Patent: July 26, 2011
    Assignee: Raytheon Company
    Inventors: Delmar L. Barker, William R. Owens, Ross D. Rosenwald
  • Publication number: 20110031104
    Abstract: Isotopically-enriched graphene and isotope junctions are epitaxially grown on a catalyst substrate using a focused carbon ion beam technique. The focused carbon ion beam is filtered to pass substantially a single ion species including a single desired carbon isotope. The ion beam and filtering together provide a means to selectively isotopically-enrich the epitaxially-grown graphene from given carbon precursor and to selectively deposit graphene enriched with different carbon isotopes in different regions.
    Type: Application
    Filed: October 20, 2010
    Publication date: February 10, 2011
    Inventors: Delmar L. Barker, William R. Owens, John Warren Beck
  • Patent number: 7883580
    Abstract: Ion implantation is used to grow nanotubes out of carbon and other materials. Catalytic material is placed on or in a membrane that physically and possibly environmentally separates an implantation chamber or region from a growth chamber or region. High-energy ions are implanted into the catalytic material from one side to grow nanotubes on an exposed surface in the growth chamber. Ion implantation via the membrane provides for greater flexibility to separate and independently control the implantation and growth processes.
    Type: Grant
    Filed: April 2, 2008
    Date of Patent: February 8, 2011
    Assignee: Raythedn Company
    Inventors: Delmar L. Barker, Mead M. Jordan, W. Howard Poisl
  • Publication number: 20110001063
    Abstract: An acoustic crystal structure includes defect cavities that concentrate the driving pressure from applied sound waves into the cavities to cavitate gas bubbles in a liquid to produce sonoluminescence. This device may be used to study sonoluminescence or cavitation or to perform sonochemistry, nuclear fusion etc. in the cavities. A waveguide may be operatively coupled to the acoustic crystal to extract, collect and route a band of electromagnetic (EM) radiation around a specified source wavelength to an output port for emission by an antenna to provide an EM source. The waveguide may, for example, be a photonic crystal defect waveguide, a photonic crystal optical fiber or Sommerfeld waveguide.
    Type: Application
    Filed: July 2, 2009
    Publication date: January 6, 2011
    Inventors: Delmar L. Barker, William R. Owens
  • Publication number: 20100304218
    Abstract: Stone Wales defect pairs in a carbon nanostructure are used to store energy. Energy is released by a chain reaction of phonons disrupting the defect pairs to generate more phonons until the lattice returns to its original hexagonal form and the energy is released in the form of lattice vibrations. Devices may be configured as a battery to release electrical energy in a controlled manner or as an explosive to release energy in an uncontrolled manner.
    Type: Application
    Filed: May 28, 2009
    Publication date: December 2, 2010
    Inventors: Delmar L. Barker, William R. Owens
  • Patent number: 7837905
    Abstract: Strengthened filaments and fibers are realized by mixing and dissolving monomer and catalyst in a solvent into open-ended nanotubes to form a polymer precursor prior to polymerization in which the open nanotubes are filled with monomer and catalyst. The remaining steps for forming a stabilized filament may follow the conventional sequence. The result is that the nanotubes are “doubly-embedded” in the polymer matrix (bonds to the polymer inside and extending through the nanotube and bonds to other polymer chains outside the nanotube) in the filament. These additional bonds provide additional mechanical strength. The number of bonds may be further enhanced by pretreating the nanotubes to create defects in the nanotubes to form sites along the inner and outer walls for additional polymer-to-nanotube bonds.
    Type: Grant
    Filed: May 16, 2008
    Date of Patent: November 23, 2010
    Assignee: Raytheon Company
    Inventors: Delmar L. Barker, Mead M. Jordan, W. Howard Poisl
  • Patent number: 7837813
    Abstract: Stone Wales defect pairs in a carbon nanostructure are used to store energy. Energy is released by a chain reaction of phonons disrupting the defect pairs to generate more phonons until the lattice returns to its original hexagonal form and the energy is released in the form of lattice vibrations. Devices may be configured as a battery to release electrical energy in a controlled manner or as an explosive to release energy in an uncontrolled manner.
    Type: Grant
    Filed: May 28, 2009
    Date of Patent: November 23, 2010
    Assignee: Raytheon Company
    Inventors: Delmar L. Barker, William R. Owens
  • Patent number: 7825366
    Abstract: Methods and systems for extracting energy from a heat source using photonic crystals with defect cavities generally comprise a photonic crystal, a cavity, and a converter. The photonic crystal is responsive to a heat source and generates an electromagnetic beam in response to incidence with the heat source. The photonic crystal exhibits a band gap such that wavelengths within the band gap are substantially confined within the photonic crystal. The cavity is substantially within the crystal and is responsive to the electromagnetic beam such that the cavity transmits the electromagnetic beam to a specified location. The converter is substantially collocated with the specified location and extracts energy in response to incidence with the electromagnetic beam.
    Type: Grant
    Filed: September 11, 2008
    Date of Patent: November 2, 2010
    Assignee: Raytheon Company
    Inventors: Delmar L. Barker, William R. Owens, Abram G. Young
  • Publication number: 20100236511
    Abstract: A system and method to inject nanostructures into the fuel/oxidizer mixture, typically lean mixtures, to increase efficiency of internal combustion and/or decrease pollution. An electromagnetic pulse (suitably 1 to 100 GHz) couples energy to the nanostructures to produce a volumetric combustion of the fuel oxidizer mixture. The fuel/oxidizer mixture is substantially transparent to the band of the electromagnetic pulse. The nanostructures couple to the electromagnetic radiation, absorb the energy and heat rapidly producing many local ignitions that in turn produce volume combustion. The nanostructures may be filled or partially filled with energetic material.
    Type: Application
    Filed: January 22, 2010
    Publication date: September 23, 2010
    Inventors: Mark E. Elkanick, Delmar L. Barker
  • Publication number: 20100139289
    Abstract: A heat transfer device exploits the properties of photonic crystal solids with resonant defect cavities to execute a thermodynamic cycle to accomplish the conversion between heat flow and useful energy in the form of a heat engine or heat pump. The device comprises a photonic crystal having at least one and preferably several resonant defect cavities that radiate electromagnetic energy in an emission band. In a heat pump or refrigerator configuration, work means perform work on the photonic crystal to cycle the photonic crystal between a first state to permit the crystal to collect thermal energy from a cold region to heat the crystal and a second state to permit the photonic crystal to radiate electromagnetic energy to a hot region to cool the photonic crystal. The efficient collection of heat energy and radiation of electromagnetic energy in the cycle is accomplished by cycling the heat transfer into the photonic crystal and/or the crystal's emission band.
    Type: Application
    Filed: December 5, 2008
    Publication date: June 10, 2010
    Inventors: DELMAR L. BARKER, William R. Owens
  • Patent number: 7724420
    Abstract: A system and method for modulating the frequency of electromagnetic radiation utilizes a frozen shockwave in a photonic band gap structure. The structure provides a discontinuity in lattice constant that functions as a shockwave, and that does not shift its position within the structure. In addition the modulation device or structure includes an acoustic pulse generator, such as a piezoelectric transducer coupled to one end of the photonic band gap structure. The acoustic pulse generator may be driven to produce a periodic pulse in the photonic band gap structure. The frozen shockwave, a defect or discontinuity in the photonic band gap structure, is used to hold incoming electromagnetic radiation in place. The acoustic pulse passing through the photonic band gap structure Doppler shifts the frequency of the radiation. The frequency-shifted radiation is then ejected out of the frozen shockwave portion of the photonic band gap structure.
    Type: Grant
    Filed: October 10, 2006
    Date of Patent: May 25, 2010
    Assignee: Raytheon Company
    Inventors: Delmar L. Barker, William R. Owens, Abram G. Young
  • Publication number: 20100108916
    Abstract: A thermally powered source of IR or THz radiation combines low dimension nano-scale oscillators such as nano-wires and nano-tubes with micro-scale photonic crystal resonant defect cavities for efficient generation, coupling and transmission of electromagnetic radiation. The oscillators have M=0, 1 or 2 resonant dimensions on a micro-scale (approximately 1 um to approximately 1 mm) to emit radiation having a local peak at a desired wavelength in the IR or THz regions. The oscillators have at least one non-resonant dimension on a nano-scale (less than approximately 100 nm) to suppress vibration modes in that dimension and channel more thermal energy into the local peak. The photonic crystal defect cavities have N=1, 2 or 3 (N>M) resonant dimensions on the microscale with lengths comparable to the length of the oscillator and the desired wavelength to exhibit a cavity resonant that overlaps the local peak to accept and transmit emitted radiation.
    Type: Application
    Filed: November 6, 2008
    Publication date: May 6, 2010
    Inventors: DELMAR L. BARKER, William R. Owens, Patrick O. Kano
  • Patent number: 7701381
    Abstract: The present invention describes a system and method of OAM diverse signal processing using classical beams for applications in which OAM signal character is controlled such as optical tagging and applications in which OAM signal character is not controlled such as clutter mitigation and interference cancellation for target detection, identification etc. This is accomplished by transmitting a source beam having a prescribed state with one or more non-zero OAM components, reflecting the beam off a ‘tagged’ or ‘untagged’ target and receiving the return beam in the direct return path to measure the one or more OAM components to identify the target. OAM processing provides additional degrees of processing freedom to greatly enhance the processing capabilities to detect and identify both ‘tagged’ and ‘untagged’ targets.
    Type: Grant
    Filed: August 26, 2008
    Date of Patent: April 20, 2010
    Assignee: Raytheon Company
    Inventors: Harry A. Schmitt, Donald E. Waagen, Nitesh N. Shah, Delmar L. Barker, Andrew D. Greentree
  • Publication number: 20100012021
    Abstract: A precursor chiral nanotube with a specified chirality is grown using an epitaxial process and then cloned. A substrate is provided of crystal material having sheet lattice properties complementary to the lattice properties of the selected material for the nanotube. A cylindrical surface(s) having a diameter of 1 to 100 nanometers are formed as a void in the substrate or as crystal material projecting from the substrate with an orientation with respect to the axes of the crystal substrate corresponding to the selected chirality. A monocrystalline film of the selected material is epitaxially grown on the cylindrical surface that takes on the sheet lattice properties and orientation of the crystal substrate to form a precursor chiral nanotube. A catalytic particle is placed on the precursor chiral nanotube and atoms of the selected material are dissolved into the catalytic particle to clone a chiral nanotube from the precursor chiral nanotube.
    Type: Application
    Filed: July 16, 2008
    Publication date: January 21, 2010
    Inventors: DELMAR L. BARKER, William R. Owens
  • Publication number: 20100013696
    Abstract: The present invention describes a system and method of OAM diverse signal processing using classical beams for applications in which OAM signal character is controlled such as optical tagging and applications in which OAM signal character is not controlled such as clutter mitigation and interference cancellation for target detection, identification etc. This is accomplished by transmitting a source beam having a prescribed state with one or more non-zero OAM components, reflecting the beam off a ‘tagged’ or ‘untagged’ target and receiving the return beam in the direct return path to measure the one or more OAM components to identify the target. OAM processing provides additional degrees of processing freedom to greatly enhance the processing capabilities to detect and identify both ‘tagged’ and ‘untagged’ targets.
    Type: Application
    Filed: August 26, 2008
    Publication date: January 21, 2010
    Inventors: HARRY A. SCHMITT, Donald E. Waagen, Nitesh N. Shah, Delmar L. Barker, Andrew D. Greentree
  • Publication number: 20090286079
    Abstract: Strengthened filaments and fibers are realized by mixing and dissolving monomer and catalyst in a solvent into open-ended nanotubes to form a polymer precursor prior to polymerization in which the open nanotubes are filled with monomer and catalyst. The remaining steps for forming a stabilized filament may follow the conventional sequence. The result is that the nanotubes are “doubly-embedded” in the polymer matrix (bonds to the polymer inside and extending through the nanotube and bonds to other polymer chains outside the nanotube) in the filament. These additional bonds provide additional mechanical strength. The number of bonds may be further enhanced by pretreating the nanotubes to create defects in the nanotubes to form sites along the inner and outer walls for additional polymer-to-nanotube bonds.
    Type: Application
    Filed: May 16, 2008
    Publication date: November 19, 2009
    Inventors: Delmar L. Barker, Mead M. Jordan, W. Howard Poisl
  • Publication number: 20090252886
    Abstract: Ion implantation is used to grow nanotubes out of carbon and other materials. Catalytic material is placed on or in a membrane that physically and possibly environmentally separates an implantation chamber or region from a growth chamber or region. High-energy ions are implanted into the catalytic material from one side to grow nanotobes on an exposed surface in the growth chamber. Ion implantation via the membrane provides for greater flexibility to separate and independently control the implantation and growth processes.
    Type: Application
    Filed: April 2, 2008
    Publication date: October 8, 2009
    Inventors: DELMAR L. BARKER, Mead M. Jordan, W. Howard Poisl
  • Publication number: 20090252887
    Abstract: An ion source(s) is configured to generate ions from one or more elements including a plurality of different isotopes or unique molecular combinations of two or more different isotopes from at least one of the selected elements. A selection filter(s) directs a subset of the ions onto a catalytic transmembrane to grow nanotubes of a specific isotope composition on the opposite side of the transmembrane. The nanotubes may be uniformly or selectively doped with dopant atoms. A controller can configure the selection filter(s) to sequentially pass different subsets of ions to form isotope, molecular or element junctions in the growing nanotubes.
    Type: Application
    Filed: June 16, 2008
    Publication date: October 8, 2009
    Inventors: Delmar L. Barker, John Warren Beck