Patents by Inventor Deloris R. GAGAN

Deloris R. GAGAN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240043578
    Abstract: A pre-catalyst composition comprising: a) a silica support comprising silica wherein an amount of silica is in a range of from about 70 wt. % to about 95 wt. % based upon a total weight of the silica support; b) a titanium-containing compound wherein an amount of titanium is in a range of from about 0.1 wt. % to about 10 wt. % based upon the total weight of the silica support; c) a chromium-containing compound wherein an amount of chromium is in a range of from about 0.1 wt. % to about 10 wt. % based upon the total weight of the silica support; d) a surfactant wherein the surfactant comprises a non-ionic surfactant, a cationic surfactant, or a combination thereof; e) a carboxylate wherein the carboxylate comprises a multi carboxylate, an alpha-hydroxy carboxylate, or a combination thereof; and f) a solvent.
    Type: Application
    Filed: October 18, 2023
    Publication date: February 8, 2024
    Inventors: Max P. MCDANIEL, Kathy S. CLEAR, William C. ELLIS, Deloris R. GAGAN
  • Publication number: 20230183400
    Abstract: Techniques are provided for catalyst preparation. A method includes heating a mixture of one or more transition metal compounds and an oxide support or a chromium containing oxide support to a temperature or a set of temperatures that enables the a transition metal compound of the one or more transition metal compounds to sublime, melt, or thermally decompose, such that a transition metal of the one or more transition metal compounds reacts with and is deposited onto a surface of the oxide support or the chromium containing oxide support to form a catalyst, and activating the catalyst. The catalyst is configured to facilitate a reaction that produces a target inorganic material.
    Type: Application
    Filed: February 8, 2023
    Publication date: June 15, 2023
    Inventors: William C. Ellis, Max P. McDaniel, Deloris R. Gagan
  • Publication number: 20220306773
    Abstract: A pre-catalyst composition comprising: a) a silica support comprising silica wherein an amount of silica is in a range of from about 70 wt. % to about 95 wt. % based upon a total weight of the silica support; b) a titanium-containing compound wherein an amount of titanium is in a range of from about 0.1 wt. % to about 10 wt. % based upon the total weight of the silica support; c) a chromium-containing compound wherein an amount of chromium is in a range of from about 0.1 wt. % to about 10 wt. % based upon the total weight of the silica support; d) a surfactant wherein the surfactant comprises a non-ionic surfactant, a cationic surfactant, or a combination thereof; e) a carboxylate wherein the carboxylate comprises a multi carboxylate, an alpha-hydroxy carboxylate, or a combination thereof; and f) a solvent.
    Type: Application
    Filed: June 6, 2022
    Publication date: September 29, 2022
    Inventors: Max P. MCDANIEL, Kathy S. CLEAR, William C. ELLIS, Deloris R. GAGAN
  • Patent number: 11384171
    Abstract: A pre-catalyst composition comprising: a) a silica support comprising silica wherein an amount of silica is in a range of from about 70 wt. % to about 95 wt. % based upon a total weight of the silica support; b) a titanium-containing compound wherein an amount of titanium is in a range of from about 0.1 wt. % to about 10 wt. % based upon the total weight of the silica support; c) a chromium-containing compound wherein an amount of chromium is in a range of from about 0.1 wt. % to about 10 wt. % based upon the total weight of the silica support; d) a surfactant wherein the surfactant comprises a non-ionic surfactant, a cationic surfactant, or a combination thereof, e) a carboxylate wherein the carboxylate comprises a multi carboxylate, an alpha-hydroxy carboxylate, or a combination thereof, and f) a solvent.
    Type: Grant
    Filed: September 13, 2021
    Date of Patent: July 12, 2022
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Kathy S. Clear, William C. Ellis, Deloris R. Gagan
  • Patent number: 11338278
    Abstract: Catalyst preparation systems and methods for preparing reduced chromium catalysts are disclosed, and can comprise irradiating a supported chromium catalyst containing hexavalent chromium with a light beam having a wavelength within the UV-visible light spectrum. Such reduced chromium catalysts have improved catalytic activity compared to chromium catalysts reduced by other means. The use of the reduced chromium catalyst in polymerization reactor systems and olefin polymerization processes also is disclosed, resulting in polymers with a higher melt index.
    Type: Grant
    Filed: September 8, 2021
    Date of Patent: May 24, 2022
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Kathy S. Clear, Max P. McDaniel, William C. Ellis, Eric D. Schwerdtfeger, Deloris R. Gagan, Carlos A. Cruz, Masud M. Monwar
  • Patent number: 11325996
    Abstract: A method comprising contacting a silica support with a titanium-containing solution to form a titanated silica support, wherein the titanium-containing solution comprises a titanium compound, a solvent, and an amino acid. Also disclosed are olefin polymerization catalysts and pre-catalyst compositions thereof and methods of preparing olefin polymerization catalysts and pre-catalyst compositions thereof.
    Type: Grant
    Filed: June 7, 2021
    Date of Patent: May 10, 2022
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Kathy S. Clear, William C. Ellis, Deloris R. Gagan
  • Publication number: 20220135708
    Abstract: A method comprising contacting a silica support with a titanium-containing solution to form a titanated silica support, wherein the titanium-containing solution comprises a solvent; a ligand comprising a glycol, a carboxylate, a peroxide, or a combination thereof, and a titanium compound having the formula Ti(acac)2(OR)2, wherein “acac” is acetylacetonate and wherein each R independently is ethyl, isopropyl, n-propyl, isobutyl, or n-butyl.
    Type: Application
    Filed: January 19, 2022
    Publication date: May 5, 2022
    Inventors: Max P. MCDANIEL, Kathy S. CLEAR, William C. ELLIS, Deloris R. GAGAN
  • Patent number: 11267908
    Abstract: A method comprising contacting a silica support with a titanium-containing solution to form a titanated silica support, wherein the titanium-containing solution comprises a solvent; a ligand comprising a glycol, a carboxylate, a peroxide, or a combination thereof; and a titanium compound having the formula Ti(acac)2(OR)2, wherein “acac” is acetylacetonate and wherein each R independently is ethyl, isopropyl, n-propyl, isobutyl, or n-butyl.
    Type: Grant
    Filed: April 29, 2020
    Date of Patent: March 8, 2022
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Kathy S. Clear, William C. Ellis, Deloris R. Gagan
  • Patent number: 11242417
    Abstract: A method for an olefin polymerization catalyst comprises contacting a silica support or a chromium-silica support with titanium to produce a Cr/Si—Ti catalyst. A titanium-containing solution is used to facilitate the association of titanium with the support, wherein the titanium-containing solution is formed by contacting a solvent, an amino acid, optionally a peroxide, optionally a carboxylate and a titanium-containing compound. A method for preparation of an olefin polymerization catalyst comprises contacting a chromium-silica support with the titanium-containing solution under conditions suitable to form a pre-catalyst composition and further processing the pre-catalyst composition to produce a Cr/Si—Ti catalyst.
    Type: Grant
    Filed: April 29, 2020
    Date of Patent: February 8, 2022
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Kathy S. Clear, William C. Ellis, Deloris R. Gagan
  • Patent number: 11242418
    Abstract: A pre-catalyst composition comprising: a) a silica support comprising silica wherein an amount of silica is in a range of from about 70 wt. % to about 95 wt. % based upon a total weight of the silica support; b) a titanium-containing compound wherein an amount of titanium is in a range of from about 0.1 wt. % to about 20 wt. % based upon a total weight of the silica within the pre-catalyst composition; c) a chromium-containing compound wherein an amount of chromium is in a range of from about 0.01 wt. % to about 10 wt. % based upon a total weight of the silica within the pre-catalyst composition; d) a surfactant wherein the surfactant comprises a non-ionic surfactant, a cationic surfactant, or a combination thereof; e) a carboxylate wherein the carboxylate comprises a multi carboxylate, an alpha-hydroxy carboxylate, or a combination thereof; and f) a solvent.
    Type: Grant
    Filed: November 5, 2020
    Date of Patent: February 8, 2022
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Kathy S. Clear, William C. Ellis, Deloris R. Gagan
  • Patent number: 11242416
    Abstract: A method comprising contacting a silica support with a titanium-containing solution to form a titanated silica support, wherein the titanium-containing solution comprises a titanium compound, a solvent, and an amino acid. The method further comprising drying the titanated silica support to form a pre-catalyst composition; contacting a chromium-containing compound with the silica support, the titanated silica support, the pre-catalyst composition, or combinations thereof; and calcining the pre-catalyst composition to form an olefin polymerization catalyst.
    Type: Grant
    Filed: June 12, 2019
    Date of Patent: February 8, 2022
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Kathy S. Clear, William C. Ellis, Deloris R. Gagan
  • Publication number: 20220017661
    Abstract: Processes for activating chromium polymerization catalysts, which can use lower maximum activation temperatures and shorter activation times than conventional activation methods, and provide polyethylenes with high melt indices, broader molecular weight distributions, and lower long chain branching content. The activation process can comprise heating a supported chromium catalyst in an inert atmosphere to a first temperature (T1) for a first hold time (tH1), followed by allowing the chromium catalyst to attain a second temperature (T2) in the inert atmosphere, then contacting the chromium catalyst with an oxidative atmosphere for a second hold time (tH2), in which T2 can be less than or equal to T1. Additional activation treatments and conditioning steps are disclosed which can be used to enhance the melt index potential of Phillips (Cr/silica) catalysts.
    Type: Application
    Filed: September 20, 2021
    Publication date: January 20, 2022
    Applicant: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Kathy S. Clear, William C. Ellis, Deloris R. Gagan, Ted H. Cymbaluk
  • Publication number: 20210402383
    Abstract: Catalyst preparation systems and methods for preparing reduced chromium catalysts are disclosed, and can comprise irradiating a supported chromium catalyst containing hexavalent chromium with a light beam having a wavelength within the UV-visible light spectrum. Such reduced chromium catalysts have improved catalytic activity compared to chromium catalysts reduced by other means. The use of the reduced chromium catalyst in polymerization reactor systems and olefin polymerization processes also is disclosed, resulting in polymers with a higher melt index.
    Type: Application
    Filed: September 8, 2021
    Publication date: December 30, 2021
    Inventors: Kathy S. Clear, Max P. McDaniel, William C. Ellis, Eric D. Schwerdtfeger, Deloris R. Gagan, Carlos A. Cruz, Masud M. Monwar
  • Publication number: 20210403616
    Abstract: A pre-catalyst composition comprising: a) a silica support comprising silica wherein an amount of silica is in a range of from about 70 wt. % to about 95 wt. % based upon a total weight of the silica support; b) a titanium-containing compound wherein an amount of titanium is in a range of from about 0.1 wt. % to about 10 wt. % based upon the total weight of the silica support; c) a chromium-containing compound wherein an amount of chromium is in a range of from about 0.1 wt. % to about 10 wt. % based upon the total weight of the silica support; d) a surfactant wherein the surfactant comprises a non-ionic surfactant, a cationic surfactant, or a combination thereof, e) a carboxylate wherein the carboxylate comprises a multi carboxylate, an alpha-hydroxy carboxylate, or a combination thereof, and f) a solvent.
    Type: Application
    Filed: September 13, 2021
    Publication date: December 30, 2021
    Inventors: Max P. MCDANIEL, Kathy S. CLEAR, William C. ELLIS, Deloris R. GAGAN
  • Patent number: 11173475
    Abstract: Catalyst preparation systems and methods for preparing reduced chromium catalysts are disclosed, and can comprise irradiating a supported chromium catalyst containing hexavalent chromium with a light beam having a wavelength within the UV-visible light spectrum. Such reduced chromium catalysts have improved catalytic activity compared to chromium catalysts reduced by other means. The use of the reduced chromium catalyst in polymerization reactor systems and olefin polymerization processes also is disclosed, resulting in polymers with a higher melt index.
    Type: Grant
    Filed: September 16, 2019
    Date of Patent: November 16, 2021
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Kathy S. Clear, Max P. McDaniel, William C. Ellis, Eric D. Schwerdtfeger, Deloris R. Gagan, Carlos A. Cruz, Masud M. Monwar
  • Patent number: 11149098
    Abstract: Processes for activating chromium polymerization catalysts, which can use lower maximum activation temperatures and shorter activation times than conventional activation methods, and provide polyethylenes with high melt indices, broader molecular weight distributions, and lower long chain branching content. The activation process can comprise heating a supported chromium catalyst in an inert atmosphere to a first temperature (T1) for a first hold time (tH1), followed by allowing the chromium catalyst to attain a second temperature (T2) in the inert atmosphere, then contacting the chromium catalyst with an oxidative atmosphere for a second hold time (tH2), in which T2 can be less than or equal to T1. Additional activation treatments and conditioning steps are disclosed which can be used to enhance the melt index potential of Phillips (Cr/silica) catalysts.
    Type: Grant
    Filed: September 20, 2019
    Date of Patent: October 19, 2021
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Kathy S. Clear, William C. Ellis, Deloris R. Gagan, Ted H. Cymbaluk
  • Publication number: 20210292446
    Abstract: A method comprising contacting a silica support with a titanium-containing solution to form a titanated silica support, wherein the titanium-containing solution comprises a titanium compound, a solvent, and an amino acid.
    Type: Application
    Filed: June 7, 2021
    Publication date: September 23, 2021
    Inventors: Max P. MCDANIEL, Kathy S. CLEAR, William C. ELLIS, Deloris R. GAGAN
  • Patent number: 11059921
    Abstract: Disclosed herein are ethylene-based polymers generally characterized by a Mw ranging from 70,000 to 200,000 g/mol, a ratio of Mz/Mw ranging from 1.8 to 20, an IB parameter ranging from 0.92 to 1.05, and an ATREF profile characterized by one large peak. These polymers have the dart impact, tear strength, and optical properties of a metallocene-catalyzed LLDPE, but with improved processability, melt strength, and bubble stability, and can be used in blown film and other end-use applications.
    Type: Grant
    Filed: August 20, 2019
    Date of Patent: July 13, 2021
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Mark L. Hlavinka, Chung Ching Tso, Yongwoo Inn, Deloris R. Gagan, Randy S. Muninger
  • Publication number: 20210130513
    Abstract: Techniques are provided for catalyst preparation. A method includes heating a mixture of one or more transition metal compounds and an oxide support or a chromium containing oxide support to a temperature or a set of temperatures that enables the a transition metal compound of the one or more transition metal compounds to sublime, melt, or thermally decompose, such that a transition metal of the one or more transition metal compounds reacts with and is deposited onto a surface of the oxide support or the chromium containing oxide support to form a catalyst, and activating the catalyst. The catalyst is configured to facilitate a reaction that produces a target inorganic material.
    Type: Application
    Filed: November 1, 2019
    Publication date: May 6, 2021
    Inventors: William C. Ellis, Max P. McDaniel, Deloris R. Gagan
  • Publication number: 20210054112
    Abstract: A method comprising contacting a silica support with a titanium-containing solution to form a titanated silica support, wherein the titanium-containing solution comprises a titanium compound, a solvent, and a surfactant.
    Type: Application
    Filed: November 5, 2020
    Publication date: February 25, 2021
    Inventors: Max P. MCDANIEL, Kathy S. CLEAR, William C. ELLIS, Deloris R. GAGAN