Patents by Inventor Deloris R. GAGAN
Deloris R. GAGAN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12202914Abstract: Processes for activating chromium polymerization catalysts, which can use lower maximum activation temperatures and shorter activation times than conventional activation methods, and provide polyethylenes with high melt indices, broader molecular weight distributions, and lower long chain branching content. The activation process can comprise heating a supported chromium catalyst in an inert atmosphere to a first temperature (T1) for a first hold time (tH1), followed by allowing the chromium catalyst to attain a second temperature (T2) in the inert atmosphere, then contacting the chromium catalyst with an oxidative atmosphere for a second hold time (tH2), in which T2 can be less than or equal to T1. Additional activation treatments and conditioning steps are disclosed which can be used to enhance the melt index potential of Phillips (Cr/silica) catalysts.Type: GrantFiled: September 20, 2021Date of Patent: January 21, 2025Assignee: Chevron Phillips Chemical Company LPInventors: Max P. McDaniel, Kathy S. Clear, William C. Ellis, Deloris R. Gagan, Ted H. Cymbaluk
-
Patent number: 12043690Abstract: A method comprising contacting a silica support with a titanium-containing solution to form a titanated silica support, wherein the titanium-containing solution comprises a solvent; a ligand comprising a glycol, a carboxylate, a peroxide, or a combination thereof, and a titanium compound having the formula Ti(acac)2(OR)2, wherein “acac” is acetylacetonate and wherein each R independently is ethyl, isopropyl, n-propyl, isobutyl, or n-butyl.Type: GrantFiled: January 19, 2022Date of Patent: July 23, 2024Assignee: Chevron Phillips Chemical Company LPInventors: Max P. McDaniel, Kathy S. Clear, William C. Ellis, Deloris R. Gagan
-
Patent number: 12030975Abstract: A pre-catalyst composition comprising: a) a silica support comprising silica wherein an amount of silica is in a range of from about 70 wt. % to about 95 wt. % based upon a total weight of the silica support; b) a titanium-containing compound wherein an amount of titanium is in a range of from about 0.1 wt. % to about 10 wt. % based upon the total weight of the silica support; c) a chromium-containing compound wherein an amount of chromium is in a range of from about 0.1 wt. % to about 10 wt. % based upon the total weight of the silica support; d) a surfactant wherein the surfactant comprises a non-ionic surfactant, a cationic surfactant, or a combination thereof; e) a carboxylate wherein the carboxylate comprises a multi carboxylate, an alpha-hydroxy carboxylate, or a combination thereof; and f) a solvent.Type: GrantFiled: June 6, 2022Date of Patent: July 9, 2024Assignee: Chevron Phillips Chemical Company LPInventors: Max P. McDaniel, Kathy S. Clear, William C. Ellis, Deloris R. Gagan
-
Publication number: 20240043578Abstract: A pre-catalyst composition comprising: a) a silica support comprising silica wherein an amount of silica is in a range of from about 70 wt. % to about 95 wt. % based upon a total weight of the silica support; b) a titanium-containing compound wherein an amount of titanium is in a range of from about 0.1 wt. % to about 10 wt. % based upon the total weight of the silica support; c) a chromium-containing compound wherein an amount of chromium is in a range of from about 0.1 wt. % to about 10 wt. % based upon the total weight of the silica support; d) a surfactant wherein the surfactant comprises a non-ionic surfactant, a cationic surfactant, or a combination thereof; e) a carboxylate wherein the carboxylate comprises a multi carboxylate, an alpha-hydroxy carboxylate, or a combination thereof; and f) a solvent.Type: ApplicationFiled: October 18, 2023Publication date: February 8, 2024Inventors: Max P. MCDANIEL, Kathy S. CLEAR, William C. ELLIS, Deloris R. GAGAN
-
Publication number: 20230183400Abstract: Techniques are provided for catalyst preparation. A method includes heating a mixture of one or more transition metal compounds and an oxide support or a chromium containing oxide support to a temperature or a set of temperatures that enables the a transition metal compound of the one or more transition metal compounds to sublime, melt, or thermally decompose, such that a transition metal of the one or more transition metal compounds reacts with and is deposited onto a surface of the oxide support or the chromium containing oxide support to form a catalyst, and activating the catalyst. The catalyst is configured to facilitate a reaction that produces a target inorganic material.Type: ApplicationFiled: February 8, 2023Publication date: June 15, 2023Inventors: William C. Ellis, Max P. McDaniel, Deloris R. Gagan
-
Publication number: 20220306773Abstract: A pre-catalyst composition comprising: a) a silica support comprising silica wherein an amount of silica is in a range of from about 70 wt. % to about 95 wt. % based upon a total weight of the silica support; b) a titanium-containing compound wherein an amount of titanium is in a range of from about 0.1 wt. % to about 10 wt. % based upon the total weight of the silica support; c) a chromium-containing compound wherein an amount of chromium is in a range of from about 0.1 wt. % to about 10 wt. % based upon the total weight of the silica support; d) a surfactant wherein the surfactant comprises a non-ionic surfactant, a cationic surfactant, or a combination thereof; e) a carboxylate wherein the carboxylate comprises a multi carboxylate, an alpha-hydroxy carboxylate, or a combination thereof; and f) a solvent.Type: ApplicationFiled: June 6, 2022Publication date: September 29, 2022Inventors: Max P. MCDANIEL, Kathy S. CLEAR, William C. ELLIS, Deloris R. GAGAN
-
Patent number: 11384171Abstract: A pre-catalyst composition comprising: a) a silica support comprising silica wherein an amount of silica is in a range of from about 70 wt. % to about 95 wt. % based upon a total weight of the silica support; b) a titanium-containing compound wherein an amount of titanium is in a range of from about 0.1 wt. % to about 10 wt. % based upon the total weight of the silica support; c) a chromium-containing compound wherein an amount of chromium is in a range of from about 0.1 wt. % to about 10 wt. % based upon the total weight of the silica support; d) a surfactant wherein the surfactant comprises a non-ionic surfactant, a cationic surfactant, or a combination thereof, e) a carboxylate wherein the carboxylate comprises a multi carboxylate, an alpha-hydroxy carboxylate, or a combination thereof, and f) a solvent.Type: GrantFiled: September 13, 2021Date of Patent: July 12, 2022Assignee: Chevron Phillips Chemical Company LPInventors: Max P. McDaniel, Kathy S. Clear, William C. Ellis, Deloris R. Gagan
-
Patent number: 11338278Abstract: Catalyst preparation systems and methods for preparing reduced chromium catalysts are disclosed, and can comprise irradiating a supported chromium catalyst containing hexavalent chromium with a light beam having a wavelength within the UV-visible light spectrum. Such reduced chromium catalysts have improved catalytic activity compared to chromium catalysts reduced by other means. The use of the reduced chromium catalyst in polymerization reactor systems and olefin polymerization processes also is disclosed, resulting in polymers with a higher melt index.Type: GrantFiled: September 8, 2021Date of Patent: May 24, 2022Assignee: Chevron Phillips Chemical Company LPInventors: Kathy S. Clear, Max P. McDaniel, William C. Ellis, Eric D. Schwerdtfeger, Deloris R. Gagan, Carlos A. Cruz, Masud M. Monwar
-
Patent number: 11325996Abstract: A method comprising contacting a silica support with a titanium-containing solution to form a titanated silica support, wherein the titanium-containing solution comprises a titanium compound, a solvent, and an amino acid. Also disclosed are olefin polymerization catalysts and pre-catalyst compositions thereof and methods of preparing olefin polymerization catalysts and pre-catalyst compositions thereof.Type: GrantFiled: June 7, 2021Date of Patent: May 10, 2022Assignee: Chevron Phillips Chemical Company LPInventors: Max P. McDaniel, Kathy S. Clear, William C. Ellis, Deloris R. Gagan
-
Publication number: 20220135708Abstract: A method comprising contacting a silica support with a titanium-containing solution to form a titanated silica support, wherein the titanium-containing solution comprises a solvent; a ligand comprising a glycol, a carboxylate, a peroxide, or a combination thereof, and a titanium compound having the formula Ti(acac)2(OR)2, wherein “acac” is acetylacetonate and wherein each R independently is ethyl, isopropyl, n-propyl, isobutyl, or n-butyl.Type: ApplicationFiled: January 19, 2022Publication date: May 5, 2022Inventors: Max P. MCDANIEL, Kathy S. CLEAR, William C. ELLIS, Deloris R. GAGAN
-
Patent number: 11267908Abstract: A method comprising contacting a silica support with a titanium-containing solution to form a titanated silica support, wherein the titanium-containing solution comprises a solvent; a ligand comprising a glycol, a carboxylate, a peroxide, or a combination thereof; and a titanium compound having the formula Ti(acac)2(OR)2, wherein “acac” is acetylacetonate and wherein each R independently is ethyl, isopropyl, n-propyl, isobutyl, or n-butyl.Type: GrantFiled: April 29, 2020Date of Patent: March 8, 2022Assignee: Chevron Phillips Chemical Company LPInventors: Max P. McDaniel, Kathy S. Clear, William C. Ellis, Deloris R. Gagan
-
Patent number: 11242417Abstract: A method for an olefin polymerization catalyst comprises contacting a silica support or a chromium-silica support with titanium to produce a Cr/Si—Ti catalyst. A titanium-containing solution is used to facilitate the association of titanium with the support, wherein the titanium-containing solution is formed by contacting a solvent, an amino acid, optionally a peroxide, optionally a carboxylate and a titanium-containing compound. A method for preparation of an olefin polymerization catalyst comprises contacting a chromium-silica support with the titanium-containing solution under conditions suitable to form a pre-catalyst composition and further processing the pre-catalyst composition to produce a Cr/Si—Ti catalyst.Type: GrantFiled: April 29, 2020Date of Patent: February 8, 2022Assignee: Chevron Phillips Chemical Company LPInventors: Max P. McDaniel, Kathy S. Clear, William C. Ellis, Deloris R. Gagan
-
Patent number: 11242416Abstract: A method comprising contacting a silica support with a titanium-containing solution to form a titanated silica support, wherein the titanium-containing solution comprises a titanium compound, a solvent, and an amino acid. The method further comprising drying the titanated silica support to form a pre-catalyst composition; contacting a chromium-containing compound with the silica support, the titanated silica support, the pre-catalyst composition, or combinations thereof; and calcining the pre-catalyst composition to form an olefin polymerization catalyst.Type: GrantFiled: June 12, 2019Date of Patent: February 8, 2022Assignee: Chevron Phillips Chemical Company LPInventors: Max P. McDaniel, Kathy S. Clear, William C. Ellis, Deloris R. Gagan
-
Patent number: 11242418Abstract: A pre-catalyst composition comprising: a) a silica support comprising silica wherein an amount of silica is in a range of from about 70 wt. % to about 95 wt. % based upon a total weight of the silica support; b) a titanium-containing compound wherein an amount of titanium is in a range of from about 0.1 wt. % to about 20 wt. % based upon a total weight of the silica within the pre-catalyst composition; c) a chromium-containing compound wherein an amount of chromium is in a range of from about 0.01 wt. % to about 10 wt. % based upon a total weight of the silica within the pre-catalyst composition; d) a surfactant wherein the surfactant comprises a non-ionic surfactant, a cationic surfactant, or a combination thereof; e) a carboxylate wherein the carboxylate comprises a multi carboxylate, an alpha-hydroxy carboxylate, or a combination thereof; and f) a solvent.Type: GrantFiled: November 5, 2020Date of Patent: February 8, 2022Assignee: Chevron Phillips Chemical Company LPInventors: Max P. McDaniel, Kathy S. Clear, William C. Ellis, Deloris R. Gagan
-
Publication number: 20220017661Abstract: Processes for activating chromium polymerization catalysts, which can use lower maximum activation temperatures and shorter activation times than conventional activation methods, and provide polyethylenes with high melt indices, broader molecular weight distributions, and lower long chain branching content. The activation process can comprise heating a supported chromium catalyst in an inert atmosphere to a first temperature (T1) for a first hold time (tH1), followed by allowing the chromium catalyst to attain a second temperature (T2) in the inert atmosphere, then contacting the chromium catalyst with an oxidative atmosphere for a second hold time (tH2), in which T2 can be less than or equal to T1. Additional activation treatments and conditioning steps are disclosed which can be used to enhance the melt index potential of Phillips (Cr/silica) catalysts.Type: ApplicationFiled: September 20, 2021Publication date: January 20, 2022Applicant: Chevron Phillips Chemical Company LPInventors: Max P. McDaniel, Kathy S. Clear, William C. Ellis, Deloris R. Gagan, Ted H. Cymbaluk
-
Publication number: 20210403616Abstract: A pre-catalyst composition comprising: a) a silica support comprising silica wherein an amount of silica is in a range of from about 70 wt. % to about 95 wt. % based upon a total weight of the silica support; b) a titanium-containing compound wherein an amount of titanium is in a range of from about 0.1 wt. % to about 10 wt. % based upon the total weight of the silica support; c) a chromium-containing compound wherein an amount of chromium is in a range of from about 0.1 wt. % to about 10 wt. % based upon the total weight of the silica support; d) a surfactant wherein the surfactant comprises a non-ionic surfactant, a cationic surfactant, or a combination thereof, e) a carboxylate wherein the carboxylate comprises a multi carboxylate, an alpha-hydroxy carboxylate, or a combination thereof, and f) a solvent.Type: ApplicationFiled: September 13, 2021Publication date: December 30, 2021Inventors: Max P. MCDANIEL, Kathy S. CLEAR, William C. ELLIS, Deloris R. GAGAN
-
Publication number: 20210402383Abstract: Catalyst preparation systems and methods for preparing reduced chromium catalysts are disclosed, and can comprise irradiating a supported chromium catalyst containing hexavalent chromium with a light beam having a wavelength within the UV-visible light spectrum. Such reduced chromium catalysts have improved catalytic activity compared to chromium catalysts reduced by other means. The use of the reduced chromium catalyst in polymerization reactor systems and olefin polymerization processes also is disclosed, resulting in polymers with a higher melt index.Type: ApplicationFiled: September 8, 2021Publication date: December 30, 2021Inventors: Kathy S. Clear, Max P. McDaniel, William C. Ellis, Eric D. Schwerdtfeger, Deloris R. Gagan, Carlos A. Cruz, Masud M. Monwar
-
Patent number: 11173475Abstract: Catalyst preparation systems and methods for preparing reduced chromium catalysts are disclosed, and can comprise irradiating a supported chromium catalyst containing hexavalent chromium with a light beam having a wavelength within the UV-visible light spectrum. Such reduced chromium catalysts have improved catalytic activity compared to chromium catalysts reduced by other means. The use of the reduced chromium catalyst in polymerization reactor systems and olefin polymerization processes also is disclosed, resulting in polymers with a higher melt index.Type: GrantFiled: September 16, 2019Date of Patent: November 16, 2021Assignee: Chevron Phillips Chemical Company LPInventors: Kathy S. Clear, Max P. McDaniel, William C. Ellis, Eric D. Schwerdtfeger, Deloris R. Gagan, Carlos A. Cruz, Masud M. Monwar
-
Patent number: 11149098Abstract: Processes for activating chromium polymerization catalysts, which can use lower maximum activation temperatures and shorter activation times than conventional activation methods, and provide polyethylenes with high melt indices, broader molecular weight distributions, and lower long chain branching content. The activation process can comprise heating a supported chromium catalyst in an inert atmosphere to a first temperature (T1) for a first hold time (tH1), followed by allowing the chromium catalyst to attain a second temperature (T2) in the inert atmosphere, then contacting the chromium catalyst with an oxidative atmosphere for a second hold time (tH2), in which T2 can be less than or equal to T1. Additional activation treatments and conditioning steps are disclosed which can be used to enhance the melt index potential of Phillips (Cr/silica) catalysts.Type: GrantFiled: September 20, 2019Date of Patent: October 19, 2021Assignee: Chevron Phillips Chemical Company LPInventors: Max P. McDaniel, Kathy S. Clear, William C. Ellis, Deloris R. Gagan, Ted H. Cymbaluk
-
Publication number: 20210292446Abstract: A method comprising contacting a silica support with a titanium-containing solution to form a titanated silica support, wherein the titanium-containing solution comprises a titanium compound, a solvent, and an amino acid.Type: ApplicationFiled: June 7, 2021Publication date: September 23, 2021Inventors: Max P. MCDANIEL, Kathy S. CLEAR, William C. ELLIS, Deloris R. GAGAN