Patents by Inventor Demis Hassabis

Demis Hassabis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240127045
    Abstract: A method performed by one or more computers for obtaining an optimized algorithm that (i) is functionally equivalent to a target algorithm and (ii) optimizes one or more target properties when executed on a target set of one or more hardware devices. The method includes: initializing a target tensor representing the target algorithm; generating, using a neural network having a plurality of network parameters, a tensor decomposition of the target tensor that parametrizes a candidate algorithm; generating target property values for each of the target properties when executing the candidate algorithm on the target set of hardware devices; determining a benchmarking score for the tensor decomposition based on the target property values of the candidate algorithm; generating a training example from the tensor decomposition and the benchmarking score; and storing, in a training data store, the training example for use in updating the network parameters of the neural network.
    Type: Application
    Filed: October 3, 2022
    Publication date: April 18, 2024
    Inventors: Thomas Keisuke Hubert, Shih-Chieh Huang, Alexander Novikov, Alhussein Fawzi, Bernardino Romera-Paredes, David Silver, Demis Hassabis, Grzegorz Michal Swirszcz, Julian Schrittwieser, Pushmeet Kohli, Mohammadamin Barekatain, Matej Balog, Francisco Jesus Rodriguez Ruiz
  • Patent number: 11842270
    Abstract: We describe an artificial neural network comprising: an input layer of input neurons, one or more hidden layers of neurons in successive layers of neurons above the input layer, and at least one further, concept-identifying layer of neurons above the hidden layers. The neural network includes an activation memory coupled to an intermediate, hidden layer of neurons between the input concept-identifying layers to store a pattern of activation of the intermediate layer. The neural network further includes a system to determine an overlap between a plurality of the stored patterns of activation and to activate in the intermediate hidden layer an overlap pattern such that the concept-identifying layer of neurons is configured to identify features of the overlap patterns. We also describe related methods, processor control code, and computing systems for the neural network. Optionally further, higher level concept-identifying layers of neurons may be included.
    Type: Grant
    Filed: June 30, 2020
    Date of Patent: December 12, 2023
    Assignee: DeepMind Technologies Limited
    Inventors: Alexander Lerchner, Demis Hassabis
  • Patent number: 11769057
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for learning visual concepts using neural networks. One of the methods includes receiving a new symbol input comprising one or more symbols from a vocabulary; and generating a new output image that depicts concepts referred to by the new symbol input, comprising: processing the new symbol input using a symbol encoder neural network to generate a new symbol encoder output for the new symbol input; sampling, from the distribution parameterized by the new symbol encoder output, a respective value for each of a plurality of visual factors; and processing a new image decoder input comprising the respective values for the visual factors using an image decoder neural network to generate the new output image.
    Type: Grant
    Filed: June 6, 2022
    Date of Patent: September 26, 2023
    Assignee: DeepMind Technologies Limited
    Inventors: Alexander Lerchner, Irina Higgins, Nicolas Sonnerat, Arka Tilak Pal, Demis Hassabis, Loic Matthey-de-l'Endroit, Christopher Paul Burgess, Matthew Botvinick
  • Publication number: 20230088555
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for learning visual concepts using neural networks. One of the methods includes receiving a new symbol input comprising one or more symbols from a vocabulary; and generating a new output image that depicts concepts referred to by the new symbol input, comprising: processing the new symbol input using a symbol encoder neural network to generate a new symbol encoder output for the new symbol input; sampling, from the distribution parameterized by the new symbol encoder output, a respective value for each of a plurality of visual factors; and processing a new image decoder input comprising the respective values for the visual factors using an image decoder neural network to generate the new output image.
    Type: Application
    Filed: June 6, 2022
    Publication date: March 23, 2023
    Inventors: Alexander Lerchner, Irina Higgins, Nicolas Sonnerat, Arka Tilak Pal, Demis Hassabis, Loic Matthey-de-l'Endroit, Christopher Paul Burgess, Matthew Botvinick
  • Patent number: 11354823
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for learning visual concepts using neural networks. One of the methods includes receiving a new symbol input comprising one or more symbols from a vocabulary; and generating a new output image that depicts concepts referred to by the new symbol input, comprising: processing the new symbol input using a symbol encoder neural network to generate a new symbol encoder output for the new symbol input; sampling, from the distribution parameterized by the new symbol encoder output, a respective value for each of a plurality of visual factors; and processing a new image decoder input comprising the respective values for the visual factors using an image decoder neural network to generate the new output image.
    Type: Grant
    Filed: July 11, 2018
    Date of Patent: June 7, 2022
    Assignee: DeepMind Technologies Limited
    Inventors: Alexander Lerchner, Irina Higgins, Nicolas Sonnerat, Arka Tilak Pal, Demis Hassabis, Loic Matthey-de-l'Endroit, Christopher Paul Burgess, Matthew Botvinick
  • Publication number: 20200234468
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for learning visual concepts using neural networks. One of the methods includes receiving a new symbol input comprising one or more symbols from a vocabulary; and generating a new output image that depicts concepts referred to by the new symbol input, comprising: processing the new symbol input using a symbol encoder neural network to generate a new symbol encoder output for the new symbol input; sampling, from the distribution parameterized by the new symbol encoder output, a respective value for each of a plurality of visual factors; and processing a new image decoder input comprising the respective values for the visual factors using an image decoder neural network to generate the new output image.
    Type: Application
    Filed: July 11, 2018
    Publication date: July 23, 2020
    Inventors: Alexander Lerchner, Irina Higgins, Nicolas Sonnerat, Arka Tilak Pal, Demis Hassabis, Loic Matthey-de-l'Endroit, Christopher Paul Burgess, Matthew Botvinick