Patents by Inventor Dengfeng Xu

Dengfeng Xu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8284380
    Abstract: A dual-stage switching system for lithographic machine includes a wafer stage to be operated in an exposure station and another wafer stage to be operated in a pre-processing station. The two wafer stages are provided on a base, with four 2-DOF driving units capable of moving along X direction and Y direction being provided along the edge of the base, and the wafer stages being disposed in a space surrounded by the four 2-DOF driving units and suspended on an upper surface of the base by air bearings. Each of the 2-DOF driving units includes upper and lower linear guides and a guiding sleeve, with the upper and lower linear guides being installed vertical to each other in their corresponding guiding sleeve. Two adjacent 2-DOF driving units cooperatively drive the wafer stage) to move in the X direction and Y direction.
    Type: Grant
    Filed: March 14, 2008
    Date of Patent: October 9, 2012
    Assignee: Tsinghua University
    Inventors: Yu Zhu, Ming Zhang, Jinsong Wang, Guang Li, Dengfeng Xu, Wensheng Yin, Guanghong Duan, Kaiming Yang
  • Publication number: 20120127448
    Abstract: A dual wafer stage exchanging system for a lithographic device is disclosed, said system comprises two wafer stages running between an exposure workstation and a pre-processing workstation, and said two stages are set on a base and suspended above the upper surface of the base by air bearings. Each wafer stages is passed through by a Y-direction guide rail respectively, wherein one end of said guide rail is connected with a main driving unit and another end of said guide rail is detachably coupled with one of the two X-direction auxiliary driving units with single degree of freedom, and said two wafer stages are capable of moving in Y-direction along the guide rails and moving in X-direction under the drive of the auxiliary driving units with single degree of freedom. The position exchange of said two wafer stages can be enabled by the detachment and connection of the Y-direction guide rails and the auxiliary units with single degree of freedom.
    Type: Application
    Filed: May 25, 2010
    Publication date: May 24, 2012
    Applicant: Tsinghua University
    Inventors: Yu Zhu, Ming Zhang, Jingsong Wang, Li Tian, Dengfeng Xu, Wensheng Yin, Guanghong Duan, Jinchun Hu
  • Publication number: 20120099094
    Abstract: A dual-stage exchange system for a lithographic apparatus comprises a silicon chip stage (10) operating in an exposure workstation (6) and a silicon chip stage (12) operating in a pre-processing workstation (7). Each silicon chip stage (10, 12) is supported by a six-freedom micro-motion stage, respectively. The silicon chip stage (10, 12) and the six-freedom micro-motion stage form a silicon chip stage group. The two silicon chip stage groups are provided on the same rectangular base stage (1) and suspended on an upper surface (2) of the base sage by air bearings. A double-freedom driving unit (21a, 21b, 22a, 22b) is provided on each edge of the base stage (1), respectively. The six-freedom micro-motion stage of the silicon chip stage group has an upper layer driver and a lower layer driver, capable of achieving six-freedom control.
    Type: Application
    Filed: April 2, 2010
    Publication date: April 26, 2012
    Applicant: TSINGHUA UNIVERSITY
    Inventors: Yu Zhu, Ming Zhang, Jingsong Wang, Li Tian, Dengfeng Xu, Wensheng Yin, Guanghong Duan, Jinchun Hu
  • Publication number: 20120099095
    Abstract: A dual-stage exchange system for a lithographic apparatus comprises a silicon chip stage (13) operating in an exposure workstation (3) and a silicon chip (14) stage operating in a pre-processing workstation (4). The two silicon chip stages (13, 14) are provided on the same base stage (1), and suspended on an upper surface (2) of the base stage by air bearings. The two silicon chip stages (13, 14) can move along guide rails (15, 16) in the Y direction. One end of each guide rail (15, 16) is connected to a main driving unit (11, 12), and the other end of each guide rail (15, 16) is butt-jointed with an X-direction single-freedom auxiliary driving unit (7, 8). The silicon chip stages (13, 14) are driven by the single-freedom auxiliary driving units (7, 8) cooperated with the main driving units (11, 12) to move along the X direction.
    Type: Application
    Filed: April 2, 2010
    Publication date: April 26, 2012
    Applicant: TSINGHUA UNIVERSITY
    Inventors: Yu Zhu, Ming Zhang, Jingsong Wang, Li Tian, Dengfeng Xu, Wensheng Yin, Guanghong Duan, Jinchun Hu
  • Patent number: 8084897
    Abstract: A micro stage with 6 degrees of freedom used in super-precise processing and sensing equipment fields is disclosed. The micro stage has three sets of electromagnetic driving units arranged in a horizontal plane for driving the micro stage to obtain movements within the horizontal plane with 3 degrees of freedom in X, Y and ?z directions and three electromagnetic driving units arranged in a vertical direction for driving the micro stage to obtain additional movements with 3 degrees of freedom in Z, ?x and ?y directions. Direct driving by electromagnetic force is used in the invention. The invention is also applicable in super-precise processing and sensing fields for achieving 6 degree-of-freedom motions. The micro stage, which operates on the basis of Lorentz Law, provides a linear relation between the output pushing force and the input electrical current.
    Type: Grant
    Filed: March 14, 2008
    Date of Patent: December 27, 2011
    Assignee: Tsinghua University
    Inventors: Yu Zhu, Jinsong Wang, Ming Zhang, Guang Li, Dengfeng Xu, Wensheng Yin, Guanghong Duan, Kaiming Yang
  • Publication number: 20100208227
    Abstract: A dual-stage switching system for lithographic machine includes a wafer stage to be operated in an exposure station and another wafer stage to be operated in a pre-processing station. The two wafer stages are provided on a base, with four 2-DOF driving units capable of moving along X direction and Y direction being provided along the edge of the base, and the wafer stages being disposed in a space surrounded by the four 2-DOF driving units and suspended on an upper surface of the base by air bearings. Each of the 2-DOF driving units includes upper and lower linear guides and a guiding sleeve, with the upper and lower linear guides being installed vertical to each other in their corresponding guiding sleeve. Two adjacent 2-DOF driving units cooperatively drive the wafer stage) to move in the X direction and Y direction.
    Type: Application
    Filed: March 14, 2008
    Publication date: August 19, 2010
    Applicant: Tsinghua University
    Inventors: Yu Zhu, Ming Zhang, Jinsong Wang, Guang Li, Dengfeng Xu, Wensheng Yin, Guanghong Duan, Kaiming Yang
  • Publication number: 20100187917
    Abstract: A micro stage with 6 degrees of freedom used in super-precise processing and sensing equipment filed is disclosed. The micro stage has three sets of electromagnetic driving units arranged in a horizontal plane for driving the micro stage to obtain movements within the horizontal plane with 3 degrees of freedom in X, Y and ?z directions and three electromagnetic driving units arranged in a vertical direction for driving the micro stage to obtain additional movements with 3 degrees of freedom in Z, ?x and ?y directions. Direct driving by electromagnetic force is used in the invention, resulting in advantages over stacked structures of having a simple structure, a compact profile, a low driven weight center, low stator inertia, etc. Thus, there is no mechanical friction and damping, and high displacement resolution can be provided. The positioning error of a wafer table of a lithographic machine can be compensated, and the leveling and focusing of the lithographic machine can be achieved.
    Type: Application
    Filed: March 14, 2008
    Publication date: July 29, 2010
    Applicant: TSINGHUA UNIVERSITY
    Inventors: Yu Zhu, Jinsong Wang, Ming Zhang, Guang Li, Dengfeng Xu, Wensheng Yin, Guanghong Duan, Kaiming Yang
  • Patent number: 7651762
    Abstract: Articles of manufacture and devices and methods of forming and using the same are provided, wherein the article comprises a porous inorganic substrate contained in or bounded by a support made from an inorganic material are provided, wherein said porous substrate and support are heated to a temperature effective to shrink the support onto the porous substrate such that liquid tight contact is formed between the porous substrate and the support. In a preferred aspect, the porous inorganic substrate has a porosity of at least 5%, and is a porous monolith formed using a sol-gel method. The articles thus formed provide a confined fluid flow through the porous substrate, providing superior performance in separations, catalysis, filtration, and the like.
    Type: Grant
    Filed: March 13, 2007
    Date of Patent: January 26, 2010
    Assignee: Varian, Inc.
    Inventors: Dengfeng Xu, Robert Lee Grenz
  • Patent number: 7595350
    Abstract: Ultraporous sol gel monoliths and methods for preparing the same are provided, having superior flow characteristics for chromatography and analytical chemistry applications. The methods for forming an ultra porous sol-gel monolith include (a) forming a solution comprising a porogen, a matrix dissolving catalyst and a sol gel precursor; (b) allowing the solution to form a gel; and (c) drying the gel at an elevated temperature. The ultraporous sol gel monoliths are characterized by a porosity of up to about 97%, a BET surface area of at least about 50 m2/g and substantially no micropores.
    Type: Grant
    Filed: September 11, 2008
    Date of Patent: September 29, 2009
    Assignee: Varian, Inc.
    Inventor: Dengfeng Xu
  • Publication number: 20090008327
    Abstract: Ultraporous sol gel monoliths and methods for preparing the same are provided, having superior flow characteristics for chromatography and analytical chemistry applications. The methods for forming an ultra porous sol-gel monolith include (a) forming a solution comprising a porogen, a matrix dissolving catalyst and a sol gel precursor; (b) allowing the solution to form a gel; and (c) drying the gel at an elevated temperature. The ultraporous sol gel monoliths are characterized by a porosity of up to about 97%, a BET surface area of at least about 50 m2/g and substantially no micropores.
    Type: Application
    Filed: September 11, 2008
    Publication date: January 8, 2009
    Inventor: Dengfeng Xu
  • Patent number: 7439272
    Abstract: Ultraporous sol gel monoliths and methods for preparing the same are provided, having superior flow characteristics for chromatography and analytical chemistry applications. The methods for forming an ultra porous sol-gel monolith include (a) forming a solution comprising a porogen, a matrix dissolving catalyst and a sol gel precursor; (b) allowing the solution to form a gel; and (c) drying the gel at an elevated temperature. The ultraporous sol gel monoliths are characterized by a porosity of up to about 97%, a BET surface area of at least about 50 m2/g and substantially no micropores.
    Type: Grant
    Filed: December 20, 2004
    Date of Patent: October 21, 2008
    Assignee: Varian, Inc.
    Inventor: Dengfeng Xu
  • Publication number: 20080223786
    Abstract: Articles of manufacture and devices and methods of forming and using the same are provided, wherein the article comprises a porous inorganic substrate contained in or bounded by a support made from an inorganic material are provided, wherein said porous substrate and support are heated to a temperature effective to shrink the support onto the porous substrate such that liquid tight contact is formed between the porous substrate and the support. In a preferred aspect, the porous inorganic substrate has a porosity of at least 5%, and is a porous monolith formed using a sol-gel method. The articles thus formed provide a confined fluid flow through the porous substrate, providing superior performance in separations, catalysis, filtration, and the like.
    Type: Application
    Filed: March 13, 2007
    Publication date: September 18, 2008
    Inventors: Dengfeng Xu, Robert Lee Grenz
  • Patent number: 7125912
    Abstract: A method of preparing a solution for forming a doped gel monolith includes providing a first substance including a metal alkoxide. The method further includes providing a second substance including a catalyst. The method further includes providing a chemical including a dopant. The method further includes forming a solution including the dopant, said forming including mixing the first substance and the second substance together. The method further includes cooling the solution to a mixture temperature which is at or below zero degrees Celsius, wherein the solution has a significantly longer gelation time at the mixture temperature than at room temperature.
    Type: Grant
    Filed: August 7, 2002
    Date of Patent: October 24, 2006
    Assignee: Simax Technologies, Inc.
    Inventors: Shiho Wang, Yasar Halefoglu, Chih-hsing Cheng, Dengfeng Xu, David Kwong Nung Chan, Meng-ying Chen, Chinh Do
  • Publication number: 20060131238
    Abstract: Ultraporous sol gel monoliths and methods for preparing the same are provided, having superior flow characteristics for chromatography and analytical chemistry applications. The methods for forming an ultra porous sol-gel monolith include (a) forming a solution comprising a porogen, a matrix dissolving catalyst and a sol gel precursor; (b) allowing the solution to form a gel; and (c) drying the gel at an elevated temperature. The ultraporous sol gel monoliths are characterized by a porosity of up to about 97%, a BET surface area of at least about 50 m2/g and substantially no micropores.
    Type: Application
    Filed: December 20, 2004
    Publication date: June 22, 2006
    Inventor: Dengfeng Xu
  • Publication number: 20060083914
    Abstract: A method of manufacturing a xerogel monolith having a pore diameter distribution includes preparing a first solution comprising metal alkoxide and preparing a second solution comprising a catalyst. A third solution is prepared by mixing the first solution and the second solution together. At least one of the first, second, and third solutions is cooled to achieve a mixture temperature for the third solution which is substantially below room temperature, wherein the third solution has a significantly longer gelation time at the mixture temperature as compared to a room temperature gelation time for the third solution. The method further includes allowing the third solution to gel, thereby forming a wet gel monolith. The method further includes forming the xerogel monolith by drying the wet gel monolith.
    Type: Application
    Filed: April 26, 2005
    Publication date: April 20, 2006
    Inventors: Shiho Wang, Yasar Halefoglu, Chih-hsing Cheng, Dengfeng Xu, David Chan, Meng-ying Chen, Chinh Do
  • Patent number: 7026362
    Abstract: A method of forming a gel monolith includes preparing a first solution comprising metal alkoxide and preparing a second solution comprising a catalyst. A third solution is prepared by mixing the first solution and the second solution together. At least one of the first, second, and third solutions is cooled to achieve a mixture temperature for the third solution which is substantially below room temperature, wherein the third solution has a significantly longer gelation time at the mixture temperature as compared to a room temperature gelation time for the third solution. The method further includes allowing the third solution to gel, thereby forming the gel monolith.
    Type: Grant
    Filed: October 9, 2001
    Date of Patent: April 11, 2006
    Assignee: Simax Technologies, Inc.
    Inventors: Shiho Wang, Yasar Halefoglu, Chih-hsing Cheng, Dengfeng Xu, David Kwong Nung Chan, Meng-ying Chen, Chinh Do
  • Patent number: 7000885
    Abstract: A mold is configured to form a gel monolith including a first gel portion and a second gel portion. The mold includes a base including a first hydrophobic surface. The mold further includes a tubular outer wall including a second hydrophobic surface, and the outer wall is coupled to the base. The mold further includes a removable tubular insert including an inner surface and an outer hydrophobic surface. The insert is removably coupled to the base.
    Type: Grant
    Filed: February 1, 2002
    Date of Patent: February 21, 2006
    Assignee: Simax Technologies, Inc.
    Inventors: Shiho Wang, Yasar Halefoglu, Chih-hsing Cheng, Dengfeng Xu
  • Patent number: 6884822
    Abstract: A method of manufacturing a xerogel monolith having a pore diameter distribution includes preparing a first solution comprising metal alkoxide and preparing a second solution comprising a catalyst. A third solution is prepared by mixing the first solution and the second solution together. At least one of the first, second, and third solutions is cooled to achieve a mixture temperature for the third solution which is substantially below room temperature, wherein the third solution has a significantly longer gelation time at the mixture temperature as compared to a room temperature gelation time for the third solution. The method further includes allowing the third solution to gel, thereby forming a wet gel monolith. The method further includes forming the xerogel monolith by drying the wet gel monolith.
    Type: Grant
    Filed: April 5, 2002
    Date of Patent: April 26, 2005
    Assignee: Simax Technologies, Inc.
    Inventors: Shiho Wang, Yasar Halefoglu, Chih-hsing Cheng, Dengfeng Xu, David Kwong Nung Chan, Meng-ying Chen, Chinh Do
  • Publication number: 20040194511
    Abstract: A method of fabricating a halogen-doped glass includes providing a gel monolith having a first halogen content. The method further includes reducing an impurity concentration of the gel monolith. The method further includes consolidating the gel monolith into a glass having a second halogen content. The second halogen content is less than or equal to the first halogen content. A halogen-doped glass has a fluorine content in a range between approximately 0.5 wt. % and approximately 4 wt. %, a chlorine content less than 100 parts per million, and an OH content less than one part per million.
    Type: Application
    Filed: February 3, 2004
    Publication date: October 7, 2004
    Inventors: Chih-Hsing Cheng, Dengfeng Xu
  • Publication number: 20030148053
    Abstract: A mold is configured to form a gel monolith including a first gel portion and a second gel portion. The mold includes a base including a first hydrophobic surface. The mold further includes a tubular outer wall including a second hydrophobic surface, and the outer wall is coupled to the base. The mold further includes a removable tubular insert including an inner surface and an outer hydrophobic surface. The insert is removably coupled to the base.
    Type: Application
    Filed: February 1, 2002
    Publication date: August 7, 2003
    Inventors: Shiho Wang, Yasar Halefoglu, Chih-hsing Cheng, Dengfeng Xu