Patents by Inventor Denis De Ceuster

Denis De Ceuster has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8450134
    Abstract: A solar cell includes polysilicon P-type and N-type doped regions on a backside of a substrate, such as a silicon wafer. An interrupted trench structure separates the P-type doped region from the N-type doped region in some locations but allows the P-type doped region and the N-type doped region to touch in other locations. Each of the P-type and N-type doped regions may be formed over a thin dielectric layer. Among other advantages, the resulting solar cell structure allows for increased efficiency while having a relatively low reverse breakdown voltage.
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: May 28, 2013
    Assignee: SunPower Corporation
    Inventors: Denis De Ceuster, Peter John Cousins, David D. Smith
  • Patent number: 8409912
    Abstract: In one embodiment, active diffusion junctions of a solar cell are formed by diffusing dopants from dopant sources selectively deposited on the back side of a wafer. The dopant sources may be selectively deposited using a printing method, for example. Multiple dopant sources may be employed to form active diffusion regions of varying doping levels. For example, three or four active diffusion regions may be fabricated to optimize the silicon/dielectric, silicon/metal, or both interfaces of a solar cell. The front side of the wafer may be textured prior to forming the dopant sources using a texturing process that minimizes removal of wafer material. Openings to allow metal gridlines to be connected to the active diffusion junctions may be formed using a self-aligned contact opening etch process to minimize the effects of misalignments.
    Type: Grant
    Filed: September 15, 2010
    Date of Patent: April 2, 2013
    Assignee: SunPower Corporation
    Inventors: Denis de Ceuster, Peter John Cousins, Richard M. Swanson, Jane E. Manning
  • Publication number: 20120255606
    Abstract: A multilayer anti-reflection structure for a backside contact solar cell. The anti-reflection structure may be formed on a front side of the backside contact solar cell. The anti-reflection structure may include a passivation level, a high optical absorption layer over the passivation level, and a low optical absorption layer over the high optical absorption layer. The passivation level may include silicon dioxide thermally grown on a textured surface of the solar cell substrate, which may be an N-type silicon substrate. The high optical absorption layer may be configured to block at least 10% of UV radiation coming into the substrate. The high optical absorption layer may comprise high-k silicon nitride and the low optical absorption layer may comprise low-k silicon nitride.
    Type: Application
    Filed: May 14, 2012
    Publication date: October 11, 2012
    Inventors: Hsin-Chiao LUAN, Denis DE CEUSTER
  • Publication number: 20120186649
    Abstract: A solar cell formation method, and resulting structure, having a first film and a barrier film over a surface of a doped semiconductor, wherein the optical and/or electrical properties of the first film are transformed in-situ such that a resulting transformed film is better suited to the efficient functioning of the solar cell; wherein portions of the barrier film partially cover the first film and substantially prevent transformation of first film areas beneath the portions of the barrier film.
    Type: Application
    Filed: September 17, 2010
    Publication date: July 26, 2012
    Applicant: TETRASUN, INC.
    Inventors: Adrian Bruce Turner, Oliver Schultz-Wuttnann, Denis De Ceuster, Douglas E. Crafts
  • Patent number: 8198528
    Abstract: A multilayer anti-reflection structure for a backside contact solar cell. The anti-reflection structure may be formed on a front side of the backside contact solar cell. The anti-reflection structure may include a passivation level, a high optical absorption layer over the passivation level, and a low optical absorption layer over the high optical absorption layer. The passivation level may include silicon dioxide thermally-grown on a textured surface of the solar cell substrate, which may be an N-type silicon substrate. The high optical absorption layer may be configured to block at least 10% of UV radiation coming into the substrate. The high optical absorption layer may comprise high-k silicon nitride and the low optical absorption layer may comprise low-k silicon nitride.
    Type: Grant
    Filed: December 1, 2008
    Date of Patent: June 12, 2012
    Assignee: SunPower Corporation
    Inventors: Hsin-Chiao Luan, Denis De Ceuster
  • Patent number: 8163638
    Abstract: In one embodiment, active diffusion junctions of a solar cell are formed by diffusing dopants from dopant sources selectively deposited on the back side of a wafer. The dopant sources may be selectively deposited using a printing method, for example. Multiple dopant sources may be employed to form active diffusion regions of varying doping levels. For example, three or four active diffusion regions may be fabricated to optimize the silicon/dielectric, silicon/metal, or both interfaces of a solar cell. The front side of the wafer may be textured prior to forming the dopant sources using a texturing process that minimizes removal of wafer material. Openings to allow metal gridlines to be connected to the active diffusion junctions may be formed using a self-aligned contact opening etch process to minimize the effects of misalignments.
    Type: Grant
    Filed: September 15, 2010
    Date of Patent: April 24, 2012
    Assignee: SunPower Corporation
    Inventors: Denis De Ceuster, Peter John Cousins, Richard M. Swanson, Jane E. Manning
  • Publication number: 20110272016
    Abstract: In one embodiment, a solar cell has base and emitter diffusion regions formed on the back side. The emitter diffusion region is configured to collect minority charge carriers in the solar cell, while the base diffusion region is configured to collect majority charge carriers. The emitter diffusion region may be a continuous region separating the base diffusion regions. Each of the base diffusion regions may have a reduced area to decrease minority charge carrier recombination losses without substantially increasing series resistance losses due to lateral flow of majority charge carriers. Each of the base diffusion regions may have a dot shape, for example.
    Type: Application
    Filed: July 19, 2011
    Publication date: November 10, 2011
    Inventors: Denis DE CEUSTER, Peter John COUSINS
  • Patent number: 8008575
    Abstract: In one embodiment, a solar cell has base and emitter diffusion regions formed on the back side. The emitter diffusion region is configured to collect minority charge carriers in the solar cell, while the base diffusion region is configured to collect majority charge carriers. The emitter diffusion region may be a continuous region separating the base diffusion regions. Each of the base diffusion regions may have a reduced area to decrease minority charge carrier recombination losses without substantially increasing series resistance losses due to lateral flow of majority charge carriers. Each of the base diffusion regions may have a dot shape, for example.
    Type: Grant
    Filed: July 24, 2006
    Date of Patent: August 30, 2011
    Assignee: SunPower Corporation
    Inventors: Denis De Ceuster, Peter John Cousins
  • Publication number: 20110059571
    Abstract: A solar cell includes polysilicon P-type and N-type doped regions on a backside of a substrate, such as a silicon wafer. An interrupted trench structure separates the P-type doped region from the N-type doped region in some locations but allows the P-type doped region and the N-type doped region to touch in other locations. Each of the P-type and N-type doped regions may be formed over a thin dielectric layer. Among other advantages, the resulting solar cell structure allows for increased efficiency while having a relatively low reverse breakdown voltage.
    Type: Application
    Filed: November 12, 2010
    Publication date: March 10, 2011
    Inventors: Denis DE CEUSTER, Peter John COUSINS, David D. SMITH
  • Publication number: 20110003424
    Abstract: In one embodiment, active diffusion junctions of a solar cell are formed by diffusing dopants from dopant sources selectively deposited on the back side of a wafer. The dopant sources may be selectively deposited using a printing method, for example. Multiple dopant sources may be employed to form active diffusion regions of varying doping levels. For example, three or four active diffusion regions may be fabricated to optimize the silicon/dielectric, silicon/metal, or both interfaces of a solar cell. The front side of the wafer may be textured prior to forming the dopant sources using a texturing process that minimizes removal of wafer material. Openings to allow metal gridlines to be connected to the active diffusion junctions may be formed using a self-aligned contact opening etch process to minimize the effects of misalignments.
    Type: Application
    Filed: September 15, 2010
    Publication date: January 6, 2011
    Inventors: Denis DE CEUSTER, Peter John COUSINS, Richard M. SWANSON, Jane E. MANNING
  • Publication number: 20110000540
    Abstract: In one embodiment, active diffusion junctions of a solar cell are formed by diffusing dopants from dopant sources selectively deposited on the back side of a wafer. The dopant sources may be selectively deposited using a printing method, for example. Multiple dopant sources may be employed to form active diffusion regions of varying doping levels. For example, three or four active diffusion regions may be fabricated to optimize the silicon/dielectric, silicon/metal, or both interfaces of a solar cell. The front side of the wafer may be textured prior to forming the dopant sources using a texturing process that minimizes removal of wafer material. Openings to allow metal gridlines to be connected to the active diffusion junctions may be formed using a self-aligned contact opening etch process to minimize the effects of misalignments.
    Type: Application
    Filed: September 15, 2010
    Publication date: January 6, 2011
    Inventors: Denis DE CEUSTER, Peter John COUSINS, Richard M. SWANSON, Jane E. MANNING
  • Patent number: 7851698
    Abstract: A solar cell includes polysilicon P-type and N-type doped regions on a backside of a substrate, such as a silicon wafer. An interrupted trench structure separates the P-type doped region from the N-type doped region in some locations but allows the P-type doped region and the N-type doped region to touch in other locations. Each of the P-type and N-type doped regions may be formed over a thin dielectric layer. Among other advantages, the resulting solar cell structure allows for increased efficiency while having a relatively low reverse breakdown voltage.
    Type: Grant
    Filed: February 25, 2009
    Date of Patent: December 14, 2010
    Assignee: SunPower Corporation
    Inventors: Denis De Ceuster, Peter John Cousins, David D. Smith
  • Publication number: 20100307562
    Abstract: In one embodiment, harmful solar cell polarization is prevented or minimized by providing a conductive path that bleeds charge from a front side of a solar cell to the bulk of a wafer. The conductive path may include patterned holes in a dielectric passivation layer, a conductive anti-reflective coating, or layers of conductive material formed on the top or bottom surface of an anti-reflective coating, for example. Harmful solar cell polarization may also be prevented by biasing a region of a solar cell module on the front side of the solar cell.
    Type: Application
    Filed: July 28, 2010
    Publication date: December 9, 2010
    Inventors: Richard M. SWANSON, Denis DE CEUSTER, Vikas DESAI, Douglas H. ROSE, David D. SMITH, Neil KAMINAR
  • Patent number: 7820475
    Abstract: In one embodiment, active diffusion junctions of a solar cell are formed by diffusing dopants from dopant sources selectively deposited on the back side of a wafer. The dopant sources may be selectively deposited using a printing method, for example. Multiple dopant sources may be employed to form active diffusion regions of varying doping levels. For example, three or four active diffusion regions may be fabricated to optimize the silicon/dielectric, silicon/metal, or both interfaces of a solar cell. The front side of the wafer may be textured prior to forming the dopant sources using a texturing process that minimizes removal of wafer material. Openings to allow metal gridlines to be connected to the active diffusion junctions may be formed using a self-aligned contact opening etch process to minimize the effects of misalignments.
    Type: Grant
    Filed: December 20, 2006
    Date of Patent: October 26, 2010
    Assignee: Sunpower Corporation
    Inventors: Denis De Ceuster, Peter John Cousins, Richard M. Swanson, Jane E. Manning
  • Patent number: 7804022
    Abstract: A solar cell includes negative metal contact fingers electrically connected to N-type diffusion regions of the solar cell and positive metal contact fingers electrically connected to P-type diffusion regions of the solar cell. Both the N-type and P-type diffusion regions are on the backside of the solar cell. The solar cell includes a front side that faces the sun during normal operation. The negative and positive metal contact fingers may be interdigitated. For increased solar radiation collection, the metal contact fingers may be arranged to point to and collectively cover portions of a perimeter of a solder pad. For example, the negative metal contact fingers may be arranged to point to and collectively cover two or three sides of a solder pad.
    Type: Grant
    Filed: March 16, 2007
    Date of Patent: September 28, 2010
    Assignee: Sunpower Corporation
    Inventor: Denis De Ceuster
  • Patent number: 7786375
    Abstract: In one embodiment, harmful solar cell polarization is prevented or minimized by providing a conductive path that bleeds charge from a front side of a solar cell to the bulk of a wafer. The conductive path may include patterned holes in a dielectric passivation layer, a conductive anti-reflective coating, or layers of conductive material formed on the top or bottom surface of an anti-reflective coating, for example. Harmful solar cell polarization may also be prevented by biasing a region of a solar cell module on the front side of the solar cell.
    Type: Grant
    Filed: June 3, 2009
    Date of Patent: August 31, 2010
    Assignee: SunPower Corporation
    Inventors: Richard M. Swanson, Denis De Ceuster, Vikas Desai, Douglas H. Rose, David D. Smith, Neil Kaminar
  • Publication number: 20090308438
    Abstract: A solar cell includes polysilicon P-type and N-type doped regions on a backside of a substrate, such as a silicon wafer. An interrupted trench structure separates the P-type doped region from the N-type doped region in some locations but allows the P-type doped region and the N-type doped region to touch in other locations. Each of the P-type and N-type doped regions may be formed over a thin dielectric layer. Among other advantages, the resulting solar cell structure allows for increased efficiency while having a relatively low reverse breakdown voltage.
    Type: Application
    Filed: February 25, 2009
    Publication date: December 17, 2009
    Inventors: Denis DE CEUSTER, Peter John COUSINS, David D. SMITH
  • Publication number: 20090260673
    Abstract: In one embodiment, harmful solar cell polarization is prevented or minimized by providing a conductive path that bleeds charge from a front side of a solar cell to the bulk of a wafer. The conductive path may include patterned holes in a dielectric passivation layer, a conductive anti-reflective coating, or layers of conductive material formed on the top or bottom surface of an anti-reflective coating, for example. Harmful solar cell polarization may also be prevented by biasing a region of a solar cell module on the front side of the solar cell.
    Type: Application
    Filed: June 3, 2009
    Publication date: October 22, 2009
    Inventors: Richard M. Swanson, Denis De Ceuster, Vikas Desai, Douglas H. Rose, David D. Smith, Neil Kaminar
  • Patent number: 7554031
    Abstract: In one embodiment, harmful solar cell polarization is prevented or minimized by providing a conductive path that bleeds charge from a front side of a solar cell to the bulk of a wafer. The conductive path may include patterned holes in a dielectric passivation layer, a conductive anti-reflective coating, or layers of conductive material formed on the top or bottom surface of an anti-reflective coating, for example. Harmful solar cell polarization may also be prevented by biasing a region of a solar cell module on the front side of the solar cell.
    Type: Grant
    Filed: August 22, 2005
    Date of Patent: June 30, 2009
    Assignee: Sunpower Corporation
    Inventors: Richard M. Swanson, Denis De Ceuster, Vikas Desai, Douglas H. Rose, David D. Smith, Neil Kaminar
  • Publication number: 20090151784
    Abstract: A multilayer anti-reflection structure for a backside contact solar cell. The anti-reflection structure may be formed on a front side of the backside contact solar cell. The anti-reflection structure may include a passivation level, a high optical absorption layer over the passivation level, and a low optical absorption layer over the high optical absorption layer. The passivation level may include silicon dioxide thermally-grown on a textured surface of the solar cell substrate, which may be an N-type silicon substrate. The high optical absorption layer may be configured to block at least 10% of UV radiation coming into the substrate. The high optical absorption layer may comprise high-k silicon nitride and the low optical absorption layer may comprise low-k silicon nitride.
    Type: Application
    Filed: December 1, 2008
    Publication date: June 18, 2009
    Inventors: Hsin-Chiao LUAN, Denis De Ceuster