Patents by Inventor Denis P. Schmitt

Denis P. Schmitt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10928548
    Abstract: A determination of the free water level for a hydrocarbon-bearing reservoir is provided that accounts for the different classified rock types (that is, facies) in the reservoir. The free water level for each unique combination of facies is determined using a least squares minimization between a reference bulk volume of oil (Bvolog) determined from well logs a bulk volume of oil (Bvocalc) calculated from a saturation height function for each of the facies present in the reservoir. Systems and process for determining the free water level are provided.
    Type: Grant
    Filed: March 14, 2017
    Date of Patent: February 23, 2021
    Assignee: Saudi Arabian Oil Company
    Inventors: Ramsin Y. Eyvazzadeh, Denis P. Schmitt, David Kersey, George Saghiyyah
  • Publication number: 20180267204
    Abstract: A determination of the free water level for a hydrocarbon-bearing reservoir is provided that accounts for the different classified rock types (that is, facies) in the reservoir. The free water level for each unique combination of facies is determined using a least squares minimization between a reference bulk volume of oil (Bvolog) determined from well logs a bulk volume of oil (Bvocalc) calculated from a saturation height function for each of the facies present in the reservoir. Systems and process for determining the free water level are provided.
    Type: Application
    Filed: March 14, 2017
    Publication date: September 20, 2018
    Inventors: Ramsin Y. Eyvazzadeh, Denis P. Schmitt, David Kersey, George Saghiyyah
  • Patent number: 8559269
    Abstract: In some aspects of the invention, a method of generating a beam of acoustic energy in a borehole is disclosed. The method includes generating a first acoustic wave at a first frequency; generating a second acoustic wave at a second frequency different than the first frequency, wherein the first acoustic wave and second acoustic wave are generated by at least one transducer carried by a tool located within the borehole; transmitting the first and the second acoustic waves into an acoustically non-linear medium, wherein the composition of the non-linear medium produces a collimated beam by a non-linear mixing of the first and second acoustic waves, wherein the collimated beam has a frequency based upon a difference between the first frequency range and the second frequency, and wherein the non-linear medium has a velocity of sound between 100 m/s and 800 m/s.
    Type: Grant
    Filed: June 3, 2010
    Date of Patent: October 15, 2013
    Assignees: Chevron U.S.A., Inc., Los Alamos National Security LLC
    Inventors: Cung Khac Vu, Dipen N. Sinha, Cristian Pantea, Kurt T. Nihei, Denis P. Schmitt, Chirstopher Skelt
  • Patent number: 8547791
    Abstract: In some aspects of the invention, a method of generating a beam of acoustic energy in a borehole is disclosed.
    Type: Grant
    Filed: June 3, 2010
    Date of Patent: October 1, 2013
    Assignees: Chevron U.S.A. Inc., Los Alamos National Security LLC
    Inventors: Cung Khac Vu, Dipen N. Sinha, Cristian Pantea, Kurt T. Nihei, Denis P. Schmitt, Christopher Skelt
  • Patent number: 8547790
    Abstract: In some aspects of the invention, a method of generating a beam of acoustic energy in a borehole is disclosed. The method includes generating a first acoustic wave at a first frequency; generating a second acoustic wave at a second frequency different than the first frequency, wherein the first acoustic wave and second acoustic wave are generated by at least one transducer carried by a tool located within the borehole; transmitting the first and the second acoustic waves into an acoustically non-linear medium, wherein the composition of the non-linear medium produces a collimated beam by a non-linear mixing of the first and second acoustic waves, wherein the collimated beam has a frequency based upon a difference between the first frequency and the second frequency; and transmitting the collimated beam through a diverging acoustic lens to compensate for a refractive effect caused by the curvature of the borehole.
    Type: Grant
    Filed: June 3, 2010
    Date of Patent: October 1, 2013
    Assignees: Chevron U.S.A. Inc., Los Alamos National Security LLC
    Inventors: Cung Khac Vu, Dipen N. Sinha, Cristian Pantea, Kurt T. Nihei, Denis P. Schmitt, Christopher Skelt
  • Patent number: 8345509
    Abstract: In some aspects of the disclosure, a method for creating three-dimensional images of non-linear properties and the compressional to shear velocity ratio in a region remote from a borehole using a conveyed logging tool is disclosed.
    Type: Grant
    Filed: May 11, 2009
    Date of Patent: January 1, 2013
    Assignees: Chevron U.S.A., Inc., Los Alamos National Security
    Inventors: Cung Vu, Kurt T. Nihei, Denis P. Schmitt, Christopher Skelt, Paul A. Johnson, Robert Guyer, James A. TenCate, Pierre-Yves Le Bas
  • Patent number: 8289808
    Abstract: In some aspects of the disclosure, a method for creating three-dimensional images of non-linear properties and the compressional to shear velocity ratio in a region remote from a borehole using a conveyed logging tool is disclosed.
    Type: Grant
    Filed: May 11, 2009
    Date of Patent: October 16, 2012
    Inventors: Cung Vu, Kurt T. Nihei, Denis P. Schmitt, Christopher Skelt, Paul A. Johnson, Robert Guyer, James A. TenCate, Pierre-Yves Le Bas
  • Patent number: 8259530
    Abstract: In some aspects of the invention, a device, positioned within a well bore, configured to generate and direct an acoustic beam into a rock formation around a borehole is disclosed. The device comprises a source configured to generate a first signal at a first frequency and a second signal at a second frequency; a transducer configured to receive the generated first and the second signals and produce acoustic waves at the first frequency and the second frequency; and a non-linear material, coupled to the transducer, configured to generate a collimated beam with a frequency equal to the difference between the first frequency and the second frequency by a non-linear mixing process, wherein the non-linear material includes one or more of a mixture of liquids, a solid, a granular material, embedded microspheres, or an emulsion.
    Type: Grant
    Filed: August 27, 2010
    Date of Patent: September 4, 2012
    Assignee: Chevron U.S.A. Inc.
    Inventors: Cung Khac Vu, Dipen N. Sinha, Cristian Pantea, Kurt T. Nihei, Denis P. Schmitt, Christopher Skelt
  • Patent number: 8233349
    Abstract: In some aspects of the invention, a device, positioned within a well bore, configured to generate and direct an acoustic beam into a rock formation around a borehole is disclosed. The device comprises a source configured to generate a first signal at a first frequency and a second signal at a second frequency; a transducer configured to receive the generated first and the second signals and produce acoustic waves at the first frequency and the second frequency; and a non-linear material, coupled to the transducer, configured to generate a collimated beam with a frequency equal to the difference between the first frequency and the second frequency by a non-linear mixing process, wherein the non-linear material includes one or more of a mixture of liquids, a solid, a granular material, embedded microspheres, or an emulsion.
    Type: Grant
    Filed: August 27, 2010
    Date of Patent: July 31, 2012
    Assignee: Chevron U.S.A. Inc.
    Inventors: Cung Khac Vu, Dipen N. Sinha, Cristian Pantea, Kurt T. Nihei, Denis P. Schmitt, Christopher Skelt
  • Patent number: 8125848
    Abstract: Multipole acoustic logging-while-drilling (LWD) tools and associated methods are disclosed herein. In some embodiments, the disclosed acoustic LWD tool comprises a transmitter array and at least one receiver array. The transmitter array generates acoustic waves with an excitation pattern having a cutoff frequency greater than about 3 kHz. The receiver array is spaced apart from the transmitter array and is configured to detect said acoustic waves. Some of the disclosed method embodiments comprise: generating multipole acoustic waves in a fluid-filled borehole using an excitation pattern with a cutoff frequency greater than about 3 kHz; selectively detecting acoustic waves that propagate with said excitation pattern; and determining an acoustic shear wave slowness for a formation penetrated by the borehole.
    Type: Grant
    Filed: February 22, 2005
    Date of Patent: February 28, 2012
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Theodorus W. Geerits, Batakrishna Mandal, Denis P. Schmitt
  • Patent number: 8116167
    Abstract: A compact array of transducers is employed as a downhole instrument for acoustic investigation of the surrounding rock formation. The array is operable to generate simultaneously a first acoustic beam signal at a first frequency and a second acoustic beam signal at a second frequency different than the first frequency. These two signals can be oriented through an azimuthal rotation of the array and an inclination rotation using control of the relative phases of the signals from the transmitter elements or electromechanical linkage. Due to the non-linearity of the formation, the first and the second acoustic beam signal mix into the rock formation where they combine into a collimated third signal that propagates in the formation along the same direction than the first and second signals and has a frequency equal to the difference of the first and the second acoustic signals.
    Type: Grant
    Filed: June 12, 2008
    Date of Patent: February 14, 2012
    Assignee: Chevron U.S.A. Inc.
    Inventors: Paul A. Johnson, James A. Ten Cate, Robert Guyer, Pierre-Yves Le Bas, Cung Vu, Kurt Nihei, Denis P. Schmitt, Christopher Skelt
  • Publication number: 20110080804
    Abstract: In some aspects of the invention, a method of generating a beam of acoustic energy in a borehole is disclosed. The method includes generating a first acoustic wave at a first frequency; generating a second acoustic wave at a second frequency different than the first frequency, wherein the first acoustic wave and second acoustic wave are generated by at least one transducer carried by a tool located within the borehole; transmitting the first and the second acoustic waves into an acoustically non-linear medium, wherein the composition of the non-linear medium produces a collimated beam by a non-linear mixing of the first and second acoustic waves, wherein the collimated beam has a frequency based upon a difference between the first frequency and the second frequency; and transmitting the collimated beam through a diverging acoustic lens to compensate for a refractive effect caused by the curvature of the borehole.
    Type: Application
    Filed: June 3, 2010
    Publication date: April 7, 2011
    Applicants: Chevron U.S.A., Inc., Los Alamos National Security, LLC
    Inventors: Cung Khac Vu, Dipen N. Sinha, Cristian Pantea, Kurt T. Nihei, Denis P. Schmitt, Christopher Skelt
  • Publication number: 20110080805
    Abstract: In some aspects of the invention, a method of generating a beam of acoustic energy in a borehole is disclosed.
    Type: Application
    Filed: June 3, 2010
    Publication date: April 7, 2011
    Applicants: Chevron U.S.A., Inc., Los Alamos National Security, LLC, Los Alamos National Laboratory
    Inventors: Cung Khac Vu, Dipen N. Sinha, Cristian Pantea, Kurt T. Nihei, Denis P. Schmitt, Christopher Skelt
  • Publication number: 20110080803
    Abstract: In some aspects of the invention, a method of generating a beam of acoustic energy in a borehole is disclosed. The method includes generating a first acoustic wave at a first frequency; generating a second acoustic wave at a second frequency different than the first frequency, wherein the first acoustic wave and second acoustic wave are generated by at least one transducer carried by a tool located within the borehole; transmitting the first and the second acoustic waves into an acoustically non-linear medium, wherein the composition of the non-linear medium produces a collimated beam by a non-linear mixing of the first and second acoustic waves, wherein the collimated beam has a frequency based upon a difference between the first frequency range and the second frequency, and wherein the non-linear medium has a velocity of sound between 100 m/s and 800 m/s.
    Type: Application
    Filed: June 3, 2010
    Publication date: April 7, 2011
    Applicants: Chevron U.S.A., Inc., Los Alamos National Security, LLC, Los Alamos National Laboratory
    Inventors: Cung Khac Vu, Dipen N. Sinha, Cristian Pantea, Kurt T. Nihei, Denis P. Schmitt, Christopher Skelt
  • Publication number: 20100322029
    Abstract: In some aspects of the invention, a device, positioned within a well bore, configured to generate and direct an acoustic beam into a rock formation around a borehole is disclosed. The device comprises a source configured to generate a first signal at a first frequency and a second signal at a second frequency; a transducer configured to receive the generated first and the second signals and produce acoustic waves at the first frequency and the second frequency; and a non-linear material, coupled to the transducer, configured to generate a collimated beam with a frequency equal to the difference between the first frequency and the second frequency by a non-linear mixing process, wherein the non-linear material includes one or more of a mixture of liquids, a solid, a granular material, embedded microspheres, or an emulsion.
    Type: Application
    Filed: August 27, 2010
    Publication date: December 23, 2010
    Applicants: Chevron U.S.A., Inc., Los Alamos National Security, LLC
    Inventors: Cung Khac VU, Dipen N. Sinha, Cristian Pantea, Kurt Nihei, Denis P. Schmitt, Christopher Skelt
  • Publication number: 20100322031
    Abstract: In some aspects of the invention, a device, positioned within a well bore, configured to generate and direct an acoustic beam into a rock formation around a borehole is disclosed. The device comprises a source configured to generate a first signal at a first frequency and a second signal at a second frequency; a transducer configured to receive the generated first and the second signals and produce acoustic waves at the first frequency and the second frequency; and a non-linear material, coupled to the transducer, configured to generate a collimated beam with a frequency equal to the difference between the first frequency and the second frequency by a non-linear mixing process, wherein the non-linear material includes one or more of a mixture of liquids, a solid, a granular material, embedded microspheres, or an emulsion.
    Type: Application
    Filed: August 27, 2010
    Publication date: December 23, 2010
    Applicants: Chevron U.S.A., Inc., Los Alamos National Security, LLC
    Inventors: Cung Khac VU, Dipen N. Sinha, Cristian Pantea, Kurt Nihei, Denis P. Schmitt, Christopher Skelt
  • Patent number: 7839718
    Abstract: In some aspects of the invention, a device, positioned within a well bore, configured to generate and direct an acoustic beam into a rock formation around a borehole is disclosed. The device comprises a source configured to generate a first signal at a first frequency and a second signal at a second frequency; a transducer configured to receive the generated first and the second signals and produce acoustic waves at the first frequency and the second frequency; and a non-linear material, coupled to the transducer, configured to generate a collimated beam with a frequency equal to the difference between the first frequency and the second frequency by a non-linear mixing process, wherein the non-linear material includes one or more of a mixture of liquids, a solid, a granular material, embedded microspheres, or an emulsion.
    Type: Grant
    Filed: July 2, 2008
    Date of Patent: November 23, 2010
    Assignees: Chevron U.S.A. Inc., Los Alamos National Security, LLC
    Inventors: Cung Khac Vu, Dipen N. Sinha, Cristian Pantea, Kurt Nihei, Denis P. Schmitt, Christopher Skelt
  • Publication number: 20100265795
    Abstract: In some aspects of the disclosure, a method for creating three-dimensional images of non-linear properties and the compressional to shear velocity ratio in a region remote from a borehole using a conveyed logging tool is disclosed.
    Type: Application
    Filed: May 11, 2009
    Publication date: October 21, 2010
    Inventors: Paul A. Johnson, Cung Vu, James A. TenCate, Robert Guyer, Pierre-Yves Le Bas, Kurt T. Nihei, Denis P. Schmitt, Christopher Skelt
  • Publication number: 20100265794
    Abstract: In some aspects of the disclosure, a method for creating three-dimensional images of non-linear properties and the compressional to shear velocity ratio in a region remote from a borehole using a conveyed logging tool is disclosed.
    Type: Application
    Filed: May 11, 2009
    Publication date: October 21, 2010
    Inventors: Paul A. Johnson, Cung VU, James A. TenCate, Robert Guyer, Pierre-Yves Le Bas, Kurt T. Nihei, Denis P. Schmitt, Christopher Skelt
  • Publication number: 20100002540
    Abstract: In some aspects of the invention, a device, positioned within a well bore, configured to generate and direct an acoustic beam into a rock formation around a borehole is disclosed. The device comprises a source configured to generate a first signal at a first frequency and a second signal at a second frequency; a transducer configured to receive the generated first and the second signals and produce acoustic waves at the first frequency and the second frequency; and a non-linear material, coupled to the transducer, configured to generate a collimated beam with a frequency equal to the difference between the first frequency and the second frequency by a non-linear mixing process, wherein the non-linear material includes one or more of a mixture of liquids, a solid, a granular material, embedded microspheres, or an emulsion.
    Type: Application
    Filed: July 2, 2008
    Publication date: January 7, 2010
    Inventors: Cung Khac VU, Dipen N. Sinha, Cristian Pantea, Kurt Nihei, Denis P. Schmitt, Christopher Skelt