Patents by Inventor Denis Sharoukhov

Denis Sharoukhov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240019678
    Abstract: A microscopy system and method of focusing the same are disclosed herein. The microscopy system may include an objective, and imaging device, an illumination source, an epi-illumination module, and a controller. The imaging device is configured to capture a single image of a specimen positioned on a stage of the microscopy system. The illumination source is configured to illuminate the specimen positioned on the stage. The epi-illumination module includes a focusing mechanism in a first primary optical path of a light generated by the illumination source. The focusing mechanism is tilted in relation to a plane perpendicular to the first primary optical path. The controller is in communication with the illumination source. The controller is configured to focus the microscopy system based on a pattern produced by the focusing mechanism on the single image captured by the imaging device.
    Type: Application
    Filed: October 7, 2022
    Publication date: January 18, 2024
    Applicant: Nanotronics Imaging, Inc.
    Inventors: Patrick Schmidt, Denis Sharoukhov, Tonislav Ivanov, Jonathan Lee
  • Publication number: 20230296872
    Abstract: A fluorescence microscopy inspection system includes light sources able to emit light that causes a specimen to fluoresce and light that does not cause a specimen to fluoresce. The emitted light is directed through one or more filters and objective channels towards a specimen. A ring of lights projects light at the specimen at an oblique angle through a darkfield channel. One of the filters may modify the light to match a predetermined bandgap energy associated with the specimen and another filter may filter wavelengths of light reflected from the specimen and to a camera. The camera may produce an image from the received light and specimen classification and feature analysis may be performed on the image.
    Type: Application
    Filed: May 26, 2023
    Publication date: September 21, 2023
    Applicant: Nanotronics Imaging, Inc.
    Inventors: Matthew C. Putman, John B. Putman, Vadim Pinskiy, Denis Sharoukhov
  • Publication number: 20230186502
    Abstract: An imaging system is disclosed herein. The imaging system includes an imaging apparatus and a computing system. The imaging apparatus includes a plurality of light sources positioned at a plurality of positions and a plurality of angles relative to a stage configured to support a specimen. The imaging apparatus is configured to capture a plurality of images of a surface of the specimen. The computing system in communication with the imaging apparatus. The computing system configured to generate a 3D-reconstruction of the surface of the specimen by receiving, from the imaging apparatus, the plurality of images of the surface of the specimen, generating, by the imaging apparatus via a deep learning model, a height map of the surface of the specimen based on the plurality of images, and outputting a 3D-reconstruction of the surface of the specimen based on the height map generated by the deep learning model.
    Type: Application
    Filed: February 6, 2023
    Publication date: June 15, 2023
    Applicant: Nanotronics Imaging, Inc.
    Inventors: Matthew C. Putman, Vadim Pinskiy, Tanaporn Na Narong, Denis Sharoukhov, Tonislav Ivanov
  • Patent number: 11662563
    Abstract: A fluorescence microscopy inspection system includes light sources able to emit light that causes a specimen to fluoresce and light that does not cause a specimen to fluoresce. The emitted light is directed through one or more filters and objective channels towards a specimen. A ring of lights projects light at the specimen at an oblique angle through a darkfield channel. One of the filters may modify the light to match a predetermined bandgap energy associated with the specimen and another filter may filter wavelengths of light reflected from the specimen and to a camera. The camera may produce an image from the received light and specimen classification and feature analysis may be performed on the image.
    Type: Grant
    Filed: April 4, 2022
    Date of Patent: May 30, 2023
    Assignee: Nanotronics Imaging, Inc.
    Inventors: Matthew C. Putman, John B. Putman, Vadim Pinskiy, Denis Sharoukhov
  • Patent number: 11574413
    Abstract: An imaging system is disclosed herein. The imaging system includes an imaging apparatus and a computing system. The imaging apparatus includes a plurality of light sources positioned at a plurality of positions and a plurality of angles relative to a stage configured to support a specimen. The imaging apparatus is configured to capture a plurality of images of a surface of the specimen. The computing system in communication with the imaging apparatus. The computing system configured to generate a 3D-reconstruction of the surface of the specimen by receiving, from the imaging apparatus, the plurality of images of the surface of the specimen, generating, by the imaging apparatus via a deep learning model, a height map of the surface of the specimen based on the plurality of images, and outputting a 3D-reconstruction of the surface of the specimen based on the height map generated by the deep learning model.
    Type: Grant
    Filed: February 3, 2021
    Date of Patent: February 7, 2023
    Assignee: Nanotronics Imaging, Inc.
    Inventors: Matthew C. Putman, Vadim Pinskiy, Tanaporn Na Narong, Denis Sharoukhov, Tonislav Ivanov
  • Publication number: 20220221703
    Abstract: A fluorescence microscopy inspection system includes light sources able to emit light that causes a specimen to fluoresce and light that does not cause a specimen to fluoresce. The emitted light is directed through one or more filters and objective channels towards a specimen. A ring of lights projects light at the specimen at an oblique angle through a darkfield channel. One of the filters may modify the light to match a predetermined bandgap energy associated with the specimen and another filter may filter wavelengths of light reflected from the specimen and to a camera. The camera may produce an image from the received light and specimen classification and feature analysis may be performed on the image.
    Type: Application
    Filed: April 4, 2022
    Publication date: July 14, 2022
    Applicant: Nanotronics Imaging, Inc.
    Inventors: Matthew C. Putman, John B. Putman, Vadim Pinskiy, Denis Sharoukhov
  • Patent number: 11294162
    Abstract: A fluorescence microscopy inspection system includes light sources able to emit light that causes a specimen to fluoresce and light that does not cause a specimen to fluoresce. The emitted light is directed through one or more filters and objective channels towards a specimen. A ring of lights projects light at the specimen at an oblique angle through a darkfield channel. One of the filters may modify the light to match a predetermined bandgap energy associated with the specimen and another filter may filter wavelengths of light reflected from the specimen and to a camera. The camera may produce an image from the received light and specimen classification and feature analysis may be performed on the image.
    Type: Grant
    Filed: January 24, 2020
    Date of Patent: April 5, 2022
    Assignee: Nanotronics Imaging, Inc.
    Inventors: Matthew C. Putman, John B. Putman, Vadim Pinskiy, Denis Sharoukhov
  • Publication number: 20220046180
    Abstract: A computing system receives, from an image sensor, at least two images of a specimen positioned on a specimen stage of a microscope system. The computing system provides the at least two images to an autofocus model for detecting at least one distances to a focal plane of the specimen. The computing system identifies, via the autofocus model, the at least one distance to the focal plane of the specimen. Based on the identifying, the computing system automatically adjusts a position of the specimen stage with respect to an objective lens of the microscope system.
    Type: Application
    Filed: August 6, 2021
    Publication date: February 10, 2022
    Applicant: Nanotronics Imaging, Inc.
    Inventors: Denis Sharoukhov, Tonislav Ivanov, Jonathan Lee
  • Publication number: 20220044362
    Abstract: Embodiments disclosed herein are generally related to a system for noise reduction in low signal to noise ratio imaging conditions. A computing system obtains a set of images of a specimen. The set of images includes at least two images of the specimen. The computing system inputs the set of images of the specimen into a trained denoising model. The trained denoising model is configured to output a single denoised image of the specimen. The computing system receives, as output from the trained denoising model, a single denoised image of the specimen.
    Type: Application
    Filed: August 5, 2021
    Publication date: February 10, 2022
    Applicant: Nanotronics Imaging, Inc.
    Inventors: Denis Sharoukhov, Tonislav Ivanov, Jonathan Lee
  • Publication number: 20210241478
    Abstract: An imaging system is disclosed herein. The imaging system includes an imaging apparatus and a computing system. The imaging apparatus includes a plurality of light sources positioned at a plurality of positions and a plurality of angles relative to a stage configured to support a specimen. The imaging apparatus is configured to capture a plurality of images of a surface of the specimen. The computing system in communication with the imaging apparatus. The computing system configured to generate a 3D-reconstruction of the surface of the specimen by receiving, from the imaging apparatus, the plurality of images of the surface of the specimen, generating, by the imaging apparatus via a deep learning model, a height map of the surface of the specimen based on the plurality of images, and outputting a 3D-reconstruction of the surface of the specimen based on the height map generated by the deep learning model.
    Type: Application
    Filed: February 3, 2021
    Publication date: August 5, 2021
    Applicant: Nanotronics Imaging, Inc.
    Inventors: Matthew C. Putman, Vadim Pinskiy, Tanaporn Na Narong, Denis Sharoukhov, Tonislav Ivanov
  • Publication number: 20200257100
    Abstract: A fluorescence microscopy inspection system includes light sources able to emit light that causes a specimen to fluoresce and light that does not cause a specimen to fluoresce. The emitted light is directed through one or more filters and objective channels towards a specimen. A ring of lights projects light at the specimen at an oblique angle through a darkfield channel. One of the filters may modify the light to match a predetermined bandgap energy associated with the specimen and another filter may filter wavelengths of light reflected from the specimen and to a camera. The camera may produce an image from the received light and specimen classification and feature analysis may be performed on the image.
    Type: Application
    Filed: January 24, 2020
    Publication date: August 13, 2020
    Inventors: Matthew C. Putman, John B. Putman, Vadim Pinskiy, Denis Sharoukhov
  • Patent number: 10578850
    Abstract: A fluorescence microscopy inspection system includes light sources able to emit light that causes a specimen to fluoresce and light that does not cause a specimen to fluoresce. The emitted light is directed through one or more filters and objective channels towards a specimen. A ring of lights projects light at the specimen at an oblique angle through a darkfield channel. One of the filters may modify the light to match a predetermined bandgap energy associated with the specimen and another filter may filter wavelengths of light reflected from the specimen and to a camera. The camera may produce an image from the received light and specimen classification and feature analysis may be performed on the image.
    Type: Grant
    Filed: April 30, 2019
    Date of Patent: March 3, 2020
    Assignee: NANOTRONICS IMAGING, INC.
    Inventors: Matthew C. Putman, John B. Putman, Vadim Pinskiy, Denis Sharoukhov