Patents by Inventor Denis Zelenin

Denis Zelenin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11296713
    Abstract: A system and method for detection of an event and recording data associated with the event. An application-specific integrated circuit (ASIC) for event-driven data acquisition from detector is disclosed. The event-driven circuitry stays silent when there is no event detected on the detector. The event-driven data acquisition system consumes small power and may consume no memory during waiting for an event. Once the event arrives (e.g. photons, particle or ion hits the detector panel), the event is detected and recorded. The ASIC includes multi-channel ADCs (or ADC arrays) with flexible resolution which enables an option to operate at a lower resolution during the silent period to save power.
    Type: Grant
    Filed: December 14, 2020
    Date of Patent: April 5, 2022
    Assignee: Pacific MicroCHIP Corp.
    Inventors: Reza Ramezani, Anton Karnitski, Gytis Baranauskas, Dalius Baranauskas, Denis Zelenin
  • Patent number: 11283436
    Abstract: Circuitry and methods of operating the same to delay a signal by a precise and variable amount. One embodiment is directed to a high speed delay line used in automated test equipment. The inventors have recognized and appreciated that an input signal having high data rate may be split into parallel split signals having lower data rates that are delayed in respective parallel delay paths before being combined to generate a delayed signal. One advantage of delaying a signal in such a fashion is to provide high delay line timing accuracy at high data speeds, while using a compact circuit design using circuitry components of lower bandwidth with reduced power consumption, for example by using complementary metal-oxide-semiconductor (CMOS). A further advantage is that a high speed delay line may be constructed from multiple lower data rate parallel delay lines that are modular, simplifying circuit design.
    Type: Grant
    Filed: April 25, 2019
    Date of Patent: March 22, 2022
    Assignee: Teradyne, Inc.
    Inventors: Jan Paul Anthonie van der Wagt, Denis Zelenin
  • Publication number: 20200343882
    Abstract: Circuitry and methods of operating the same to delay a signal by a precise and variable amount. One embodiment is directed to a high speed delay line used in automated test equipment. The inventors have recognized and appreciated that an input signal having high data rate may be split into parallel split signals having lower data rates that are delayed in respective parallel delay paths before being combined to generate a delayed signal. One advantage of delaying a signal in such a fashion is to provide high delay line timing accuracy at high data speeds, while using a compact circuit design using circuitry components of lower bandwidth with reduced power consumption, for example by using complementary metal-oxide-semiconductor (CMOS). A further advantage is that a high speed delay line may be constructed from multiple lower data rate parallel delay lines that are modular, simplifying circuit design.
    Type: Application
    Filed: April 25, 2019
    Publication date: October 29, 2020
    Applicant: Teradyne, Inc.
    Inventors: Jan Paul Anthonie van der Wagt, Denis Zelenin
  • Patent number: 9628263
    Abstract: According to one embodiment, a cross-correlator comprises a plurality of analog front ends (AFEs), a cross-correlation circuit and a data serializer. Each of the AFEs comprises a variable gain amplifier (VGA) and a corresponding analog-to-digital converter (ADC) in which the VGA receives and modifies a unique analog signal associates with a measured analog radio frequency (RF) signal and the ADC produces digital data associated with the modified analog signal. Communicatively coupled to the AFEs, the cross-correlation circuit performs a cross-correlation operation on the digital data produced from different measured analog RF signals. The data serializer is communicatively coupled to the summing and cross-correlating matrix and continuously outputs a prescribed amount of the correlated digital data.
    Type: Grant
    Filed: October 2, 2014
    Date of Patent: April 18, 2017
    Assignees: PACIFIC MICROCHIP CORP., CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Dalius Baranauskas, Gytis Baranauskas, Denis Zelenin, Pekka Kangaslahti, Alan B. Tanner, Boon H. Lim
  • Publication number: 20160099804
    Abstract: According to one embodiment, a cross-correlator comprises a plurality of analog front ends (AFEs), a cross-correlation circuit and a data serializer. Each of the AFEs comprises a variable gain amplifier (VGA) and a corresponding analog-to-digital converter (ADC) in which the VGA receives and modifies a unique analog signal associates with a measured analog radio frequency (RF) signal and the ADC produces digital data associated with the modified analog signal. Communicatively coupled to the AFEs, the cross-correlation circuit performs a cross-correlation operation on the digital data produced from different measured analog RF signals. The data serializer is communicatively coupled to the summing and cross-correlating matrix and continuously outputs a prescribed amount of the correlated digital data.
    Type: Application
    Filed: October 2, 2014
    Publication date: April 7, 2016
    Inventors: Dalius Baranauskas, Gytis Baranauskas, Denis Zelenin, Pekka Kangaslahti, Alan B. Tanner, Boon H. Lim
  • Patent number: 7852152
    Abstract: According to one embodiment of the invention, a circuit comprising a plurality of operational transconductance amplifiers (OTAS) is described. The first OTA has differential input and differential output. The second OTA also has differential input, where a first output of the first OTA is coupled to the first differential input of the second OTA, which is an inverting input. A second output of the first OTA is coupled to the second input of the second OTA, which is a non-inverting input. The first differential output being coupled to a first input of the first OTA and the second differential output being coupled to a second input of the first OTA for negative feedback and current biasing.
    Type: Grant
    Filed: August 28, 2008
    Date of Patent: December 14, 2010
    Assignee: Menara Networks
    Inventors: Dalius Baranauskas, Denis Zelenin, Matthias Bussmann, Salam Elahmadi
  • Publication number: 20100052778
    Abstract: According to one embodiment of the invention, a circuit comprising a plurality of operational transconductance amplifiers (OTAS) is described. The first OTA has differential input and differential output. The second OTA also has differential input, where a first output of the first OTA is coupled to the first differential input of the second OTA, which is an inverting input. A second output of the first OTA is coupled to the second input of the second OTA, which is a non-inverting input. The first differential output being coupled to a first input of the first OTA and the second differential output being coupled to a second input of the first OTA for negative feedback and current biasing.
    Type: Application
    Filed: August 28, 2008
    Publication date: March 4, 2010
    Inventors: Dalius Baranauskas, Denis Zelenin, Matthias Bussmann, Salam Elahmadi
  • Publication number: 20070241738
    Abstract: A start-up circuit for electronic circuits is provided. In one embodiment, the circuit uses a smaller capacitor and a current amplification means to force a larger capacitor to reach a charged state in a reduced time. The present invention is useful in any type of electronic circuit where fast start-up times are desirable. The present invention is especially useful in portable electronics, such as wireless communication devices, where minimal power consumption is desired. This Abstract is provided for the sole purpose of complying with the Abstract requirement rules that allow a reader to quickly ascertain the subject matter of the disclosure contained herein. This Abstract is submitted with the explicit understanding that it will not be used to interpret or to limit the scope or the meaning of the claims.
    Type: Application
    Filed: April 12, 2006
    Publication date: October 18, 2007
    Inventors: Dalius Baranauskas, Denis Zelenin, Pasur Sengottaiyan
  • Patent number: 6992609
    Abstract: The present invention provides a high speed digital-to-analog converter (DAC), and components for a high speed DAC. One embodiment of the present invention provides a novel current switching circuit that surmounts parasitic capacitance of the circuit elements. In another embodiment, the DAC includes a novel built-in-test circuit, which allows tests of the DAC at high speeds. One feature of the DAC constructed according to the present invention, is that it enables direct digital synthesis of communication waveforms. This Abstract is provided for the sole purpose of complying with the Abstract requirement rules that allow a reader to quickly ascertain the subject matter of the disclosure contained herein. This Abstract is submitted with the explicit understanding that it will not be used to interpret or to limit the scope or the meaning of the claims.
    Type: Grant
    Filed: September 17, 2004
    Date of Patent: January 31, 2006
    Assignee: Pulselink, Inc.
    Inventors: Denis Zelenin, Dalius Baranauskas