Patents by Inventor Denise E. Freed

Denise E. Freed has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230349881
    Abstract: Processes and systems for determining asphaltene equilibrium between two or more downhole geographic locations are provided. In some embodiments, the process can include measuring one or more fluid properties of a plurality of fluid samples at varying downhole depths to generate a one or more downhole fluid analysis measurement data points; selecting an asphaltene diameter distribution based on prior knowledge; utilizing the asphaltene diameter distribution to fit a first set of one or more equation of state curves to the one or more downhole fluid analysis measurement data points to define a first model of fitted equation of state curves and to determine one or more posterior distributions of asphaltene diameters; and determining if the varying downhole depths are in an asphaltene equilibrium by determining whether the one or more posterior distributions of asphaltene diameters is consistent with that of asphaltenes in equilibrium.
    Type: Application
    Filed: September 2, 2021
    Publication date: November 2, 2023
    Inventors: Melanie Jensen, Lalitha Venkataramanan, Sandip Bose, Peter Tilke, Oliver C. Mullins, Li Chen, Denise E. Freed
  • Publication number: 20220187495
    Abstract: Embodiments herein include a system and method for modeling and interpreting an evolution of fluids in an oilfield using artificial intelligence. Embodiments may include identifying, using at least one processor, one or more reservoir fluid dynamics processes or properties and generating a model for the one or more reservoir fluid dynamics processes or properties. Embodiments may include receiving, at the model, one or more parameter values corresponding to the one or more reservoir fluid dynamics processes or properties and displaying, at a graphical user interface, one or more results, based upon, at least in part, the model and the one or more parameter values.
    Type: Application
    Filed: March 11, 2020
    Publication date: June 16, 2022
    Inventors: Denise E. Freed, Harish Baban Datir, Peter Tilke, Oliver C. Mullins, Lalitha Venkataramanan, Sandip Bose
  • Patent number: 10732314
    Abstract: Apparatus and method of characterizing a subterranean formation including observing a formation using nuclear magnetic resonance measurements, calculating an answer product by computing an integral transform on the indications in measurement-domain, and using answer products to estimate a property of the formation. Apparatus and a method for characterizing a subterranean formation including collecting NMR data of a formation, calculating an answer product comprising the data, wherein the calculating comprises a formula K ? ( x ) ? ? 0 ? ? k ? ( t ) ? e - t / x ? dt . and estimating a property of the formation using the answer product.
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: August 4, 2020
    Assignee: Schlumberger Technology Corporation
    Inventors: Lalitha Venkataramanan, Tarek M. Habashy, Fred K. Gruber, Denise E. Freed
  • Patent number: 10605951
    Abstract: Techniques involve inverting a dielectric dispersion model based on the geometrical and electrochemical effects that affect dielectric dispersion in fluid-saturated rocks and other porous formation with formation data and measurements to obtain further formation characteristics. A workflow involves using multi-frequency dielectric measurements of the dielectric constant and the conductivity of the formation for reservoir evaluation. The workflow also involves determining formation data such as matrix permittivity, formation temperature, pressure, and porosity, etc., and inverting the formation data and the multi-frequency dielectric measurements with the dielectric dispersion model to determine formation characteristics such as volumetric fraction of water in the formation, the formation water salinity and the Cation Exchange Capacity (CEC), etc. From the CEC log, in combination with other measurements, clay typing may be performed and swelling clays may be identified.
    Type: Grant
    Filed: October 5, 2015
    Date of Patent: March 31, 2020
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Denise E. Freed, Nikita V. Seleznev, Chang-Yu Hou
  • Patent number: 10557809
    Abstract: Methods and related systems are described for estimating fluid or rock properties from NMR measurements. A modified pulse sequence is provided that can directly provide moments of relaxation-time or diffusion distributions. This pulse sequence can be adapted to the desired moment of relaxation-time or diffusion coefficient. The data from this pulse sequence provides direct estimates of fluid properties such as average chain length and viscosity of a hydrocarbon. In comparison to the uniformly-spaced pulse sequence, these pulse sequences are faster and have a lower error bar in computing the fluid properties.
    Type: Grant
    Filed: May 9, 2017
    Date of Patent: February 11, 2020
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Lalitha Venkataramanan, Tarek M. Habashy, Denise E. Freed
  • Patent number: 10534871
    Abstract: Fluid property modeling that employs a model that characterizes asphaltene concentration gradients is integrated into a reservoir modeling and simulation framework to allow for reservoir compartmentalization (the presence or absence of flow barrier in the reservoir) to be assessed more quickly and easily. Additionally, automated integration of the fluid property modeling into the reservoir modeling and simulation framework allows the compositional gradients produced by the fluid property modeler (particularly asphaltene concentration gradients) to be combined with other data, such as geologic data and other petrophysical data, which allows for more accurate assessment of reservoir compartmentalization.
    Type: Grant
    Filed: March 9, 2011
    Date of Patent: January 14, 2020
    Assignee: Schlumberger Technology Corporation
    Inventors: Andrew E. Pomerantz, Youxiang Zuo, John Waggoner, Zulfiquar Ail Reza, Sophie Nazik Godefroy, Thomas Pfeiffer, Denise E. Freed, Oliver C. Mullins
  • Patent number: 10345481
    Abstract: The present disclosure relates to methods and systems for developing an equation of state model for petroleum fluids. In one embodiment, formation fluid from a plurality of depths within a wellbore may be analyzed to determine a change in a gas oil ratio with respect to depth. The change in the gas oil ratio may be employed to determine a ratio of solubility and entropy terms to a gravity term. The resulting ratio can be used to develop the equation of state model.
    Type: Grant
    Filed: December 16, 2014
    Date of Patent: July 9, 2019
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Denise E. Freed, Oliver C. Mullins, Youxiang Zuo
  • Publication number: 20170241922
    Abstract: Methods and related systems are described for estimating fluid or rock properties from NMR measurements. A modified pulse sequence is provided that can directly provide moments of relaxation-time or diffusion distributions. This pulse sequence can be adapted to the desired moment of relaxation-time or diffusion coefficient. The data from this pulse sequence provides direct estimates of fluid properties such as average chain length and viscosity of a hydrocarbon. In comparison to the uniformly-spaced pulse sequence, these pulse sequences are faster and have a lower error bar in computing the fluid properties.
    Type: Application
    Filed: May 9, 2017
    Publication date: August 24, 2017
    Inventors: LALITHA VENKATARAMANAN, TAREK M. HABASHY, DENISE E. FREED
  • Patent number: 9733383
    Abstract: Methods and apparatuses are provided for analyzing a composition of a hydrocarbon-containing fluid. The methods include using a nuclear magnetic resonance (NMR) tool to conduct NMR measurements on the hydrocarbon-containing fluid to obtain NMR data. A non-NMR tool, such as an optical tool, is used to conduct additional measurements and to obtain non-NMR data on the fluid. The methods further include determining an indication of the composition of the fluid by using the NMR data and normalizing the indication of the composition of the fluid using the non-NMR data.
    Type: Grant
    Filed: December 17, 2013
    Date of Patent: August 15, 2017
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Denise E. Freed, Lalitha Venkataramanan
  • Patent number: 9715033
    Abstract: Methods and apparatuses are provided for analyzing a composition of a hydrocarbon-containing fluid. The methods include using a nuclear magnetic resonance (NMR) tool to conduct an NMR measurement on the hydrocarbon-containing fluid to obtain NMR data. A non-NMR tool, such as an optical tool, is used to conduct additional measurements on the hydrocarbon-containing fluid and to obtain non-NMR data on the fluid. An indication of the composition of the fluid can be determined by using the NMR data and the non-NMR data in an inversion process.
    Type: Grant
    Filed: December 17, 2013
    Date of Patent: July 25, 2017
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Denise E. Freed, Yi-Qiao Song, Lalitha Venkataramanan, Lukasz Zielinski, Nicholas A. Bennett, Martin D. Hürlimann
  • Patent number: 9703003
    Abstract: Apparatus and methods of analyzing a composition of a hydrocarbon-containing fluid including using a nuclear magnetic resonance (NMR) tool to conduct a NMR relaxation measurement, a diffusion measurement, or both on the hydrocarbon-containing fluid to obtain NMR data, using a non-NMR tool to conduct an additional measurement of a reference fluid to obtain non-NMR data wherein the additional measurement comprises gas chromatography, optical observation, or both, and using the NMR data and the non-NMR data in an inversion process to determine an indication of the composition of the hydrocarbon-containing fluid. In some embodiments, the indication is determined over 4 chain length nodes.
    Type: Grant
    Filed: December 17, 2013
    Date of Patent: July 11, 2017
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Nicholas N. Bennett, Yi Zeng, Lalitha Venkataramanan, Denise E. Freed, Martin D. Hürlimann
  • Patent number: 9671516
    Abstract: Methods and related systems are described for estimating fluid or rock properties from NMR measurements. A modified pulse sequence is provided that can directly provide moments of relaxation-time or diffusion distributions. This pulse sequence can be adapted to the desired moment of relaxation-time or diffusion coefficient. The data from this pulse sequence provides direct estimates of fluid properties such as average chain length and viscosity of a hydrocarbon. In comparison to the uniformly-spaced pulse sequence, these pulse sequences are faster and have a lower error bar in computing the fluid properties.
    Type: Grant
    Filed: July 6, 2012
    Date of Patent: June 6, 2017
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Lalitha Venkataramanan, Tarek M. Habashy, Denise E. Freed
  • Patent number: 9410936
    Abstract: A methodology that performs downhole fluid analysis of fluid properties of a reservoir and characterizes the reservoir based upon such downhole fluid analysis. The methodology acquires at least one fluid sample at a respective measurement station and performs downhole fluid analysis to measure properties of the fluid sample, including concentration of a plurality of high molecular weight components. For each of a plurality of type classes corresponding to different subsets of a predetermined set of high molecular weight components, a model is used to predict the concentration of the components of the given type class for the plurality of measurement stations. The predicted concentrations of the high molecular weight components for the plurality of type classes are then compared with corresponding concentrations measured by downhole fluid analysis for the plurality of measurement stations to identify the best matching type class. The results of the comparison are used for reservoir analysis.
    Type: Grant
    Filed: August 10, 2010
    Date of Patent: August 9, 2016
    Assignee: Schlumberger Technology Corporation
    Inventors: Youxiang Zuo, Denise E. Freed, Oliver Clinton Mullins, Christopher Harrison, Mary Jane Tsang Mui Ching, Huang Zeng
  • Publication number: 20160097876
    Abstract: Techniques involve inverting a dielectric dispersion model based on the geometrical and electrochemical effects that affect dielectric dispersion in fluid-saturated rocks and other porous formation with formation data and measurements to obtain further formation characteristics. A workflow involves using multi-frequency dielectric measurements of the dielectric constant and the conductivity of the formation for reservoir evaluation. The workflow also involves determining formation data such as matrix permittivity, formation temperature, pressure, and porosity, etc., and inverting the formation data and the multi-frequency dielectric measurements with the dielectric dispersion model to determine formation characteristics such as volumetric fraction of water in the formation, the formation water salinity and the Cation Exchange Capacity (CEC), etc. From the CEC log, in combination with other measurements, clay typing may be performed and swelling clays may be identified.
    Type: Application
    Filed: October 5, 2015
    Publication date: April 7, 2016
    Inventors: Denise E. Freed, Nikita V. Seleznev, Chang-Yu Hou
  • Patent number: 9222902
    Abstract: A nuclear magnetic resonance (NMR) related distribution is estimated that is consistent with NMR measurements and uses linear functionals directly estimated from the measurement indications by integral transforms as constraints in a cost function. The cost function includes indications of the measurement data, Laplace transform elements and the constraints, and a distribution estimation is made by minimizing the cost function. The distribution estimation may be used to find parameters of the sample. Where the sample is a rock or a formation, the parameters may include parameters such as rock permeability and/or hydrocarbon viscosity, bound and free fluid volumes, among others. The parameters may be used in models, equations, or otherwise to act on the sample, such as in recovering hydrocarbons from the formation.
    Type: Grant
    Filed: January 9, 2012
    Date of Patent: December 29, 2015
    Assignee: Schlumberger Technology Corporation
    Inventors: Fred K. Gruber, Lalitha Venkataramanan, Tarek M. Habashy, Philip M. Singer, Denise E. Freed
  • Patent number: 9201158
    Abstract: Estimating and displaying information about the size of molecules within a substance from nuclear magnetic resonance (NMR) maps and/or logs. Methods include utilizing a relationship between the molecular size (e.g., mean chain length), and either a moment of diffusion or a relaxation distribution, to create a scale on a two-dimensional map. In one case, applying the relationship between the molecular size, and either a moment of diffusion or a relaxation distribution, to one-dimensional diffusion or relaxation distributions for the purpose of estimating the mean chain length of molecules within the substance. In another case, a method includes determining mean chain lengths of molecules within a substance and providing a one-dimensional NMR log showing the mean chain lengths at a plurality of depths. In some cases, the NMR log includes actuatable regions for examining two-dimensional NMR maps or chain length distributions of the substance corresponding with distinct depths of the substance.
    Type: Grant
    Filed: January 24, 2012
    Date of Patent: December 1, 2015
    Assignee: Schlumberger Technology Corporation
    Inventors: Denise E. Freed, Lukasz J. Zielinski, Yi-Qiao Song, Marcus Donaldson
  • Patent number: 9074460
    Abstract: A method of evaluating a gradient of a composition of materials in a petroleum reservoir, comprising sampling fluids from a well in the petroleum reservoir in a logging operation, measuring an amount of contamination in the sampled fluids, measuring the composition of the sampling fluids using a downhole fluid analysis, measuring an asphaltene content of the sampling fluids at different depths; and fitting the asphaltene content of the sampling fluids at the different depths to a simplified equation of state during the logging operation to determine the gradient of the composition of the materials in the petroleum reservoir.
    Type: Grant
    Filed: January 18, 2013
    Date of Patent: July 7, 2015
    Assignee: Schlumberger Technology Corporation
    Inventors: Andrew E. Pomerantz, Youxiang Zuo, Denise E. Freed, Oliver C. Mullins
  • Publication number: 20150185360
    Abstract: The present disclosure relates to methods and systems for developing an equation of state model for petroleum fluids. In one embodiment, formation fluid from a plurality of depths within a wellbore may be analyzed to determine a change in a gas oil ratio with respect to depth. The change in the gas oil ratio may be employed to determine a ratio of solubility and entropy terms to a gravity term. The resulting ratio can be used to develop the equation of state model.
    Type: Application
    Filed: December 16, 2014
    Publication date: July 2, 2015
    Inventors: Denise E. Freed, Oliver C. Mullins, Youxiang Zuo
  • Publication number: 20150168585
    Abstract: Apparatus and methods of analyzing a composition of a hydrocarbon-containing fluid including using a nuclear magnetic resonance (NMR) tool to conduct a NMR relaxation measurement, a diffusion measurement, or both on the hydrocarbon-containing fluid to obtain NMR data, using a non-NMR tool to conduct an additional measurement of a reference fluid to obtain non-NMR data wherein the additional measurement comprises gas chromatography, optical observation, or both, and using the NMR data and the non-NMR data in an inversion process to determine an indication of the composition of the hydrocarbon-containing fluid. In some embodiments, the indication is determined over 4 chain length nodes.
    Type: Application
    Filed: December 17, 2013
    Publication date: June 18, 2015
    Applicant: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: NICHOLAS N. BENNETT, YI ZENG, LALITHA VENKATARAMANAN, DENISE E. FREED, MARTIN D. HÜRLIMANN
  • Publication number: 20150168586
    Abstract: Methods and apparatuses are provided for analyzing a composition of a hydrocarbon-containing fluid. The methods include using a nuclear magnetic resonance (NMR) tool to conduct an NMR measurement on the hydrocarbon-containing fluid to obtain NMR data. A non-NMR tool, such as an optical tool, is used to conduct additional measurements on the hydrocarbon-containing fluid and to obtain non-NMR data on the fluid. An indication of the composition of the fluid can be determined by using the NMR data and the non-NMR data in an inversion process.
    Type: Application
    Filed: December 17, 2013
    Publication date: June 18, 2015
    Applicant: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Denise E. FREED, Yi-Qiao SONG, Lalitha VENKATARAMANAN, Lukasz ZIELINSKI, Nicholas A. BENNETT, Martin D. HÜRLIMANN