Patents by Inventor Denise T. Maurais-Galejs

Denise T. Maurais-Galejs has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11194038
    Abstract: A multistatic array topology and image reconstruction process for fast 3D near field microwave imaging are presented. Together, the techniques allow for hardware efficient realization of an electrically large aperture and video-rate image reconstruction. The array topology samples the scene on a regular grid of phase centers, using a tiling of multistatic arrays. Following a multistatic-to-monostatic correction, the sampled data can then be processed with the well-known and highly efficient monostatic Fast Fourier Transform (FFT) imaging algorithm. In this work, the approach is described and validated experimentally with the formation of high quality microwave images. The scheme is more than two orders of magnitude more computationally efficient than the backprojection method. In fact, it is so efficient that a cluster of four commercial off-the-shelf (COTS) graphical processing units (GPUs) can render a 3D image of a human-sized scene in 0.048-0.101 seconds.
    Type: Grant
    Filed: June 6, 2019
    Date of Patent: December 7, 2021
    Assignee: Massachusetts Institute of Technology
    Inventors: William F. Moulder, James D. Krieger, Denise T. Maurais-Galejs, Huy T. Nguyen, Jeffrey S. Herd
  • Publication number: 20190324135
    Abstract: A multistatic array topology and image reconstruction process for fast 3D near field microwave imaging are presented. Together, the techniques allow for hardware efficient realization of an electrically large aperture and video-rate image reconstruction. The array topology samples the scene on a regular grid of phase centers, using a tiling of multistatic arrays. Following a multistatic-to-monostatic correction, the sampled data can then be processed with the well-known and highly efficient monostatic Fast Fourier Transform (FFT) imaging algorithm. In this work, the approach is described and validated experimentally with the formation of high quality microwave images. The scheme is more than two orders of magnitude more computationally efficient than the backprojection method. In fact, it is so efficient that a cluster of four commercial off-the-shelf (COTS) graphical processing units (GPUs) can render a 3D image of a human-sized scene in 0.048-0.101 seconds.
    Type: Application
    Filed: June 6, 2019
    Publication date: October 24, 2019
    Inventors: William F. Moulder, James D. KRIEGER, Denise T. MAURAIS-GALEJS, Huy T. NGUYEN, Jeffrey S. HERD
  • Patent number: 10353067
    Abstract: A multistatic array topology and image reconstruction process for fast 3D near field microwave imaging are presented. Together, the techniques allow for hardware efficient realization of an electrically large aperture and video-rate image reconstruction. The array topology samples the scene on a regular grid of phase centers, using a tiling of multistatic arrays. Following a multistatic-to-monostatic correction, the sampled data can then be processed with the well-known and highly efficient monostatic Fast Fourier Transform (FFT) imaging algorithm. In this work, the approach is described and validated experimentally with the formation of high quality microwave images. The scheme is more than two orders of magnitude more computationally efficient than the backprojection method. In fact, it is so efficient that a cluster of four commercial off-the-shelf (COTS) graphical processing units (GPUs) can render a 3D image of a human-sized scene in 0.048-0.101 seconds.
    Type: Grant
    Filed: September 12, 2016
    Date of Patent: July 16, 2019
    Assignee: Massachusetts Institute of Technology
    Inventors: William F. Moulder, James D. Krieger, Denise T. Maurais-Galejs, Huy Nguyen, Jeffrey S. Herd
  • Publication number: 20170227636
    Abstract: A multistatic array topology and image reconstruction process for fast 3D near field microwave imaging are presented. Together, the techniques allow for hardware efficient realization of an electrically large aperture and video-rate image reconstruction. The array topology samples the scene on a regular grid of phase centers, using a tiling of multistatic arrays. Following a multistatic-to-monostatic correction, the sampled data can then be processed with the well-known and highly efficient monostatic Fast Fourier Transform (FFT) imaging algorithm. In this work, the approach is described and validated experimentally with the formation of high quality microwave images. The scheme is more than two orders of magnitude more computationally efficient than the backprojection method. In fact, it is so efficient that a cluster of four commercial off-the-shelf (COTS) graphical processing units (GPUs) can render a 3D image of a human-sized scene in 0.048-0.101 seconds.
    Type: Application
    Filed: September 12, 2016
    Publication date: August 10, 2017
    Inventors: William F. Moulder, James D. Krieger, Denise T. Maurais-Galejs, Huy Nguyen, Jeffrey S. Herd