Patents by Inventor Denise Zarins

Denise Zarins has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170215949
    Abstract: Described here are methods and systems for the manipulation of ovarian tissues. The methods and systems may be used in the treatment of polycystic ovary syndrome (PCOS). The systems and methods may be useful in the treatment of infertility associated with PCOS.
    Type: Application
    Filed: April 21, 2017
    Publication date: August 3, 2017
    Inventors: Denise ZARINS, Neil BARMAN, Garrett SCHWAB, Roger OSBORNE, Douglas SUTTON
  • Publication number: 20170202617
    Abstract: Methods and apparatus are provided for thermally-induced renal neuromodulation. Thermally-induced renal neuromodulation may be achieved via direct and/or via indirect application of thermal energy to heat or cool neural fibers that contribute to renal function, or of vascular structures that feed or perfuse the neural fibers. In some embodiments, parameters of the neural fibers, of non-target tissue, or of the thermal energy delivery element, may be monitored via one or more sensors for controlling the thermally-induced neuromodulation. In some embodiments, protective elements may be provided to reduce a degree of thermal damage induced in the non-target tissues. In some embodiments, thermally-induced renal neuromodulation is achieved via delivery of a pulsed thermal therapy.
    Type: Application
    Filed: April 3, 2017
    Publication date: July 20, 2017
    Applicant: Medtronic Ardian Luxembourg S.a.r.l.
    Inventors: Denise Zarins, Andrew Wu, Hanson Gifford, III, Mark Deem, Mark Gelfand, Howard R. Levin
  • Patent number: 9707035
    Abstract: Methods and apparatus are provided for monopolar neuromodulation, e.g., via a pulsed electric field. Such monopolar neuromodulation may effectuate irreversible electroporation or electrofusion, necrosis and/or inducement of apoptosis, alteration of gene expression, action potential attenuation or blockade, changes in cytokine up-regulation and other conditions in target neural fibers. In some embodiments, monopolar neuromodulation is applied to neural fibers that contribute to renal function. In some embodiments, such monopolar neuromodulation is performed bilaterally.
    Type: Grant
    Filed: August 8, 2016
    Date of Patent: July 18, 2017
    Assignee: Medtronic Ardian Luxembourg S.a.r.l.
    Inventors: Denise Zarins, Hanson Gifford, III, Mark Deem, Howard R. Levin, Mark Gelfand, Nicolas Zadno
  • Patent number: 9675413
    Abstract: Methods and apparatus are provided for renal neuromodulation using a pulsed electric field to effectuate electroporation or electrofusion. It is expected that renal neuromodulation (e.g., denervation) may, among other things, reduce expansion of an acute myocardial infarction, reduce or prevent the onset of morphological changes that are affiliated with congestive heart failure, and/or be efficacious in the treatment of end stage renal disease. Embodiments of the present invention are configured for percutaneous intravascular delivery of pulsed electric fields to achieve such neuromodulation.
    Type: Grant
    Filed: February 9, 2016
    Date of Patent: June 13, 2017
    Assignee: Medtronic Ardian Luxembourg S.a.r.l.
    Inventors: Mark E. Deem, Hanson Gifford, III, Denise Zarins, Douglas Sutton, Erik Thai, Mark Gelfand, Howard R. Levin
  • Patent number: 9636174
    Abstract: Methods and apparatus are provided for treating hypertension, e.g., via a pulsed electric field, via a stimulation electric field, via localized drug delivery, via high frequency ultrasound, via thermal techniques, etc. Such neuromodulation may effectuate irreversible electroporation or electrofusion, necrosis and/or inducement of apoptosis, alteration of gene expression, action potential attenuation or blockade, changes in cytokine up-regulation and other conditions in target neural fibers. In some embodiments, neuromodulation is applied to neural fibers that contribute to renal function. In some embodiments, such neuromodulation is performed in a bilateral fashion. Bilateral renal neuromodulation may provide enhanced therapeutic effect in some patients as compared to renal neuromodulation performed unilaterally, i.e., as compared to renal neuromodulation performed on neural tissue innervating a single kidney.
    Type: Grant
    Filed: March 3, 2016
    Date of Patent: May 2, 2017
    Assignee: Medtronic Ardian Luxembourg S.a.r.l.
    Inventors: Denise Zarins, Hanson Gifford, III, Mark Deem, Douglas Sutton, Howard R. Levin, Mark Gelfand
  • Publication number: 20170080230
    Abstract: Methods and apparatus are provided for renal neuromodulation using a pulsed electric field to effectuate electroporation or electrofusion. It is expected that renal neuromodulation (e.g., denervation) may, among other things, reduce expansion of an acute myocardial infarction, reduce or prevent the onset of morphological changes that are affiliated with congestive heart failure, and/or be efficacious in the treatment of end stage renal disease. Embodiments of the present invention are configured for extravascular delivery of pulsed electric fields to achieve such neuromodulation.
    Type: Application
    Filed: September 1, 2016
    Publication date: March 23, 2017
    Inventors: Mark Deem, Denise Zarins, Douglas Sutton, Hanson Gifford, III, Howard R. Levin, Mark Gelfand, Benjamin J. Clark
  • Publication number: 20170080214
    Abstract: Methods and apparatus are provided for bilateral renal neuromodulation, e.g., via a pulsed electric field, via a stimulation electric field, via localized drug delivery, via high frequency ultrasound, via thermal techniques, etc. Such neuromodulation may effectuate irreversible electroporation or electrofusion, necrosis and/or inducement of apoptosis, alteration of gene expression, action potential attenuation or blockade, changes in cytokine up-regulation and other conditions in target neural fibers. In some embodiments, neuromodulation is applied to neural fibers that contribute to renal function. In some embodiments, such neuromodulation is performed in a bilateral fashion. Bilateral renal neuromodulation may provide enhanced therapeutic effect in some patients as compared to renal neuromodulation performed unilaterally, i.e., as compared to renal neuromodulation performed on neural tissue innervating a single kidney.
    Type: Application
    Filed: September 19, 2016
    Publication date: March 23, 2017
    Inventors: Denise Zarins, Hanson Gifford, III, Mark Deem, Douglas Sutton, Howard R. Levin, Mark Gelfand
  • Publication number: 20170065336
    Abstract: Methods and apparatus are provided for treating hypertension, e.g., via a pulsed electric field, via a stimulation electric field, via localized drug delivery, via high frequency ultrasound, via thermal techniques, etc. Such neuromodulation may effectuate irreversible electroporation or electrofusion, necrosis and/or inducement of apoptosis, alteration of gene expression, action potential attenuation or blockade, changes in cytokine up-regulation and other conditions in target neural fibers. In some embodiments, neuromodulation is applied to neural fibers that contribute to renal function. In some embodiments, such neuromodulation is performed in a bilateral fashion. Bilateral renal neuromodulation may provide enhanced therapeutic effect in some patients as compared to renal neuromodulation performed unilaterally, i.e., as compared to renal neuromodulation performed on neural tissue innervating a single kidney.
    Type: Application
    Filed: March 17, 2016
    Publication date: March 9, 2017
    Inventors: Denise Zarins, Hanson Gifford, III, Mark Deem, Douglas Sutton, Howard R. Levin, Mark Gelfand
  • Publication number: 20170065337
    Abstract: Methods and apparatus are provided for monopolar neuromodulation, e.g., via a pulsed electric field. Such monopolar neuromodulation may effectuate irreversible electroporation or electrofusion, necrosis and/or inducement of apoptosis, alteration of gene expression, action potential attenuation or blockade, changes in cytokine up-regulation and other conditions in target neural fibers. In some embodiments, monopolar neuromodulation is applied to neural fibers that contribute to renal function. In some embodiments, such monopolar neuromodulation is performed bilaterally.
    Type: Application
    Filed: August 8, 2016
    Publication date: March 9, 2017
    Inventors: Denise Zarins, Hanson Gifford, III, Mark Deem, Howard R. Levin, Mark Gelfand, Nicolas Zadno
  • Publication number: 20170056087
    Abstract: Neuromodulation cryotherapeutic devices and associated systems and methods are disclosed herein. A cryotherapeutic device configured in accordance with a particular embodiment of the present technology can include an elongated shaft having distal portion and a supply lumen along at least a portion of the shaft. The shaft can be configured to locate the distal portion intravascularly at a treatment site proximate a renal artery or renal ostium. The supply lumen can be configured to receive a liquid refrigerant. The cryotherapeutic device can further include a cooling assembly at the distal portion of the shaft. The cooling assembly can include an applicator in fluid communication with the supply lumen and configured to deliver cryotherapeutic cooling to nerves proximate the target site when the cooling assembly is in a deployed state.
    Type: Application
    Filed: August 5, 2016
    Publication date: March 2, 2017
    Inventors: Naomi Buckley, Benjamin J. Clark, Michael Cummins, Danny Donovan, Mark Gelfand, Luke Hughes, Brian Kelly, Gary Kelly, Grace Kelly, John Kelly, Mark S. Leung, Gwenda McMullin, Barry Mullins, Karun D. Naga, Stephen Nash, Eric Ryba, Fiachra Sweeney, Vicenzo Tilotta, Roman Turovskiy, Lana Woolley, Denise Zarins, Michael Turovskiy
  • Publication number: 20170021170
    Abstract: Methods and apparatus are provided for multi-vessel neuromodulation, e.g., via a pulsed electric field. Such multi-vessel neuromodulation may effectuate irreversible electroporation or electrofusion, necrosis and/or inducement of apoptosis, alteration of gene expression, action potential attenuation or blockade, changes in cytokine up-regulation and other conditions in target neural fibers. In some embodiments, the multi-vessel neuromodulation is applied to neural fibers that contribute to renal function. Such multi-vessel neuromodulation optionally may be performed bilaterally.
    Type: Application
    Filed: June 22, 2016
    Publication date: January 26, 2017
    Inventor: Denise Zarins
  • Publication number: 20170020597
    Abstract: The present disclosure relates to devices, systems and methods for evaluating the success of a treatment applied to tissue in a patient, such as a radio frequency ablative treatment used to neuromodulate nerves associated with the renal artery. A system monitors parameters or values generated during the course of a treatment. Feedback provided to an operator is based on the monitored values and relates to an assessment of the likelihood that a completed treatment was technically successful. In other embodiments, parameters or values generated during the course of an incomplete treatment (such as due to high temperature or high impedance conditions) may be evaluated to provide additional instructions or feedback to an operator.
    Type: Application
    Filed: April 22, 2016
    Publication date: January 26, 2017
    Inventors: Sowmya Ballakur, Robert J. Beetel, Paul Friedrichs, David Herzfeld, Andrew Wu, Denise Zarins, Mark S. Leung
  • Publication number: 20170014178
    Abstract: Methods and apparatus are provided for pulsed electric field neuromodulation via an intra-to-extravascular approach, e.g., to effectuate irreversible electroporation or electrofusion, necrosis and/or inducement of apoptosis, alteration of gene expression, changes in cytokine upregulation and other conditions in target neural fibers. In some embodiments, the ITEV PEF system comprises an intravascular catheter having one or more electrodes configured for intra-to-extravascular placement across a wall of patient's vessel into proximity with target neural fibers. With the electrode(s) passing from an intravascular position to an extravascular position prior to delivery of the PEF, a magnitude of applied voltage or energy delivered via the electrode(s) and necessary to achieve desired neuromodulation may be reduced relative to an intravascular PEF system having one or more electrodes positioned solely intravascularly.
    Type: Application
    Filed: April 19, 2016
    Publication date: January 19, 2017
    Inventors: Denise Zarins, Benjamin J. Clark, Nicolas Zadno, Hanson Gifford, III, Erik Thai
  • Publication number: 20170014177
    Abstract: Methods and system are provided for thermally-induced renal neuromodulation. Thermally-induced renal neuromodulation may be achieved via direct and/or via indirect application of thermal energy to heat or cool neural fibers that contribute to renal function, or of vascular structures that feed or perfuse the neural fibers. In some embodiments, parameters of the neural fibers, of non-target tissue, or of the thermal energy delivery element, may be monitored via one or more sensors for controlling the thermally-induced neuromodulation. In some embodiments, protective elements may be provided to reduce a degree of thermal damage induced in the non-target tissues. In some embodiments, thermally-induced renal neuromodulation is achieved via delivery of a pulsed thermal therapy.
    Type: Application
    Filed: April 19, 2016
    Publication date: January 19, 2017
    Inventors: Andrew Wu, Benjamin J. Clark, Erik Thai, Nicolas Zadno, Denise Zarins
  • Publication number: 20170007325
    Abstract: Microwave catheter apparatuses, systems, and methods for achieving renal neuromodulation by intravascular access are disclosed herein. One aspect of the present application, for example, is directed to apparatuses, systems, and methods that incorporate a catheter treatment device comprising an elongated shaft. The elongated shaft is sized and configured to deliver a microwave transmission element to a renal artery via an intravascular path. Renal neuromodulation may be achieved via dielectric heating in the presence of microwave irradiation that modulates neural fibers that contribute to renal function or alters vascular structures that feed or perfuse the neural fibers.
    Type: Application
    Filed: September 9, 2016
    Publication date: January 12, 2017
    Inventors: Karun D. Naga, Roman Turovskiy, Denise Zarins, Mark Gelfand, Arye Rosen
  • Publication number: 20160331448
    Abstract: Methods and apparatus are provided for non-continuous circumferential treatment of a body lumen. Apparatus may be positioned within a body lumen of a patient and may deliver energy at a first lengthwise and angular position to create a less-than-full circumferential treatment zone at the first position. The apparatus also may deliver energy at one or more additional lengthwise and angular positions within the body lumen to create less-than-full circumferential treatment zone(s) at the one or more additional positions that are offset lengthwise and angularly from the first treatment zone. Superimposition of the first treatment zone and the one or more additional treatment zones defines a non-continuous circumferential treatment zone without formation of a continuous circumferential lesion. Various embodiments of methods and apparatus for achieving such non-continuous circumferential treatment are provided.
    Type: Application
    Filed: April 28, 2016
    Publication date: November 17, 2016
    Inventors: Denise Zarins, Hanson Gifford, III, Mark Deem, Nicolas Zadno, Benjamin J. Clark, Andrew Wu, Kenneth J. Michlitsch
  • Patent number: 9486270
    Abstract: Methods and apparatus are provided for bilateral renal neuromodulation, e.g., via a pulsed electric field, via a stimulation electric field, via localized drug delivery, via high frequency ultrasound, via thermal techniques, etc. Such neuromodulation may effectuate irreversible electroporation or electrofusion, necrosis and/or inducement of apoptosis, alteration of gene expression, action potential attenuation or blockade, changes in cytokine up-regulation and other conditions in target neural fibers. In some embodiments, neuromodulation is applied to neural fibers that contribute to renal function. In some embodiments, such neuromodulation is performed in a bilateral fashion. Bilateral renal neuromodulation may provide enhanced therapeutic effect in some patients as compared to renal neuromodulation performed unilaterally, i.e., as compared to renal neuromodulation performed on neural tissue innervating a single kidney.
    Type: Grant
    Filed: August 3, 2015
    Date of Patent: November 8, 2016
    Assignee: Medtronic Ardian Luxembourg S.a.r.l.
    Inventors: Denise Zarins, Hanson Gifford, III, Mark Deem, Douglas Sutton, Howard R. Levin, Mark Gelfand
  • Patent number: 9474563
    Abstract: Methods and apparatus are provided for treating contrast nephropathy, e.g., via a pulsed electric field, via a stimulation electric field, via localized drug delivery, via high frequency ultrasound, via thermal techniques, etc. Such neuromodulation may effectuate irreversible electroporation or electrofusion, necrosis and/or inducement of apoptosis, alteration of gene expression, action potential attenuation or blockade, changes in cytokine up-regulation and other conditions in target neural fibers. In some embodiments, neuromodulation is applied to neural fibers that contribute to renal function. In some embodiments, such neuromodulation is performed in a bilateral fashion. Bilateral renal neuromodulation may provide enhanced therapeutic effect in some patients as compared to renal neuromodulation performed unilaterally, i.e., as compared to renal neuromodulation performed on neural tissue innervating a single kidney.
    Type: Grant
    Filed: April 16, 2014
    Date of Patent: October 25, 2016
    Assignee: Medtronic Ardian Luxembourg S.a.r.l.
    Inventors: Denise Zarins, Hanson Gifford, III, Mark Deem, Douglas Sutton, Howard R. Levin, Mark Gelfand
  • Patent number: 9468497
    Abstract: Methods and apparatus are provided for monopolar neuromodulation, e.g., via a pulsed electric field. Such monopolar neuromodulation may effectuate irreversible electroporation or electrofusion, necrosis and/or inducement of apoptosis, alteration of gene expression, action potential attenuation or blockade, changes in cytokine up-regulation and other conditions in target neural fibers. In some embodiments, monopolar neuromodulation is applied to neural fibers that contribute to renal function. In some embodiments, such monopolar neuromodulation is performed bilaterally.
    Type: Grant
    Filed: March 14, 2016
    Date of Patent: October 18, 2016
    Assignee: Medtronic Ardian Luxembourg S.a.r.l.
    Inventors: Denise Zarins, Hanson Gifford, III, Mark Deem, Howard R. Levin, Mark Gelfand, Nicolas Zadno
  • Publication number: 20160296279
    Abstract: Methods and apparatus are provided for renal neuromodulation using a pulsed electric field to effectuate electroporation or electrofusion. It is expected that renal neuromodulation (e.g., denervation) may, among other things, reduce expansion of an acute myocardial infarction, reduce or prevent the onset of morphological changes that are affiliated with congestive heart failure, and/or be efficacious in the treatment of end stage renal disease. Embodiments of the present invention are configured for percutaneous intravascular delivery of pulsed electric fields to achieve such neuromodulation.
    Type: Application
    Filed: April 28, 2016
    Publication date: October 13, 2016
    Applicant: Medtronic Ardian Luxembourg S.a.r.l.
    Inventors: Mark E. DEEM, Hanson GIFFORD, III, Denise ZARINS, Douglas SUTTON, Erik THAI, Mark GELFAND, Howard R. LEVIN