Patents by Inventor Dennis A. Vansickle

Dennis A. Vansickle has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11911624
    Abstract: An implantable stimulator device is disclosed for executing a stimulation program comprising a plurality of sub-programs, wherein the sub-programs are configured to be automatically sequentially executed by stimulation circuitry in the device. Control circuitry periodically stores log data to indicate where each sub-program is in its execution. If the device experiences an interruption that prevents the stimulation circuitry from executing the stimulation program, and upon receiving an indication that the stimulation circuitry can continue execution of the stimulation program, the control circuitry is configured to query the log data to determine a sub-program during which the interruption occurred, and using the log data, cause the stimulation circuitry to continue execution of the stimulation circuitry either at the beginning of the sub-program, or at a point during the sub-program when the interruption occurred.
    Type: Grant
    Filed: October 8, 2021
    Date of Patent: February 27, 2024
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Que Doan, Sridhar Kothandaraman, Adam Featherstone, Dennis Vansickle
  • Publication number: 20220023648
    Abstract: An implantable stimulator device is disclosed for executing a stimulation program comprising a plurality of sub-programs, wherein the sub-programs are configured to be automatically sequentially executed by stimulation circuitry in the device. Control circuitry periodically stores log data to indicate where each sub-program is in its execution. If the device experiences an interruption that prevents the stimulation circuitry from executing the stimulation program, and upon receiving an indication that the stimulation circuitry can continue execution of the stimulation program, the control circuitry is configured to query the log data to determine a sub-program during which the interruption occurred, and using the log data, cause the stimulation circuitry to continue execution of the stimulation circuitry either at the beginning of the sub-program, or at a point during the sub-program when the interruption occurred.
    Type: Application
    Filed: October 8, 2021
    Publication date: January 27, 2022
    Inventors: Que Doan, Sridhar Kothandaraman, Adam Featherstone, Dennis Vansickle
  • Patent number: 11160987
    Abstract: An implantable stimulator device is disclosed for executing a stimulation program comprising a plurality of sub-programs, wherein the sub-programs are configured to be automatically sequentially executed by stimulation circuitry in the device. Control circuitry periodically stores log data to indicate where each sub-program is in its execution. If the device experiences an interruption that prevents the stimulation circuitry from executing the stimulation program, and upon receiving an indication that the stimulation circuitry can continue execution of the stimulation program, the control circuitry is configured to query the log data to determine a sub-program during which the interruption occurred, and using the log data, cause the stimulation circuitry to continue execution of the stimulation circuitry either at the beginning of the sub-program, or at a point during the sub-program when the interruption occurred.
    Type: Grant
    Filed: May 22, 2019
    Date of Patent: November 2, 2021
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Que Doan, Sridhar Kothandaraman, Adam Featherstone, Dennis Vansickle
  • Publication number: 20190366104
    Abstract: An implantable stimulator device is disclosed for executing a stimulation program comprising a plurality of sub-programs, wherein the sub-programs are configured to be automatically sequentially executed by stimulation circuitry in the device. Control circuitry periodically stores log data to indicate where each sub-program is in its execution. If the device experiences an interruption that prevents the stimulation circuitry from executing the stimulation program, and upon receiving an indication that the stimulation circuitry can continue execution of the stimulation program, the control circuitry is configured to query the log data to determine a sub-program during which the interruption occurred, and using the log data, cause the stimulation circuitry to continue execution of the stimulation circuitry either at the beginning of the sub-program, or at a point during the sub-program when the interruption occurred.
    Type: Application
    Filed: May 22, 2019
    Publication date: December 5, 2019
    Inventors: Que Doan, Sridhar Kothandaraman, Adam Featherstone, Dennis Vansickle
  • Publication number: 20180043166
    Abstract: An external controller is disclosed for communicating with an external trial stimulator (ETS) for an implantable medical device. The external controller is programmed with a battery algorithm able to assist a clinician in choosing a suitable implant for the patient based on battery performance parameters estimated for a number of implants during an external trial stimulation phase that precedes implantation of the implant. The algorithm is particularly useful in assisting the clinician in choosing between a rechargeable-battery implant or a primary-battery implant for the patient.
    Type: Application
    Filed: October 12, 2017
    Publication date: February 15, 2018
    Inventors: Dennis A. Vansickle, Robert D. Ozawa
  • Patent number: 9789322
    Abstract: An external controller is disclosed for communicating with an external trial stimulator (ETS) for an implantable medical device. The external controller is programmed with a battery algorithm able to assist a clinician in choosing a suitable implant for the patient based on battery performance parameters estimated for a number of implants during an external trial stimulation phase that precedes implantation of the implant. The algorithm is particularly useful in assisting the clinician in choosing between a rechargeable-battery implant or a primary-battery implant for the patient.
    Type: Grant
    Filed: May 2, 2016
    Date of Patent: October 17, 2017
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Dennis A. Vansickle, Robert D. Ozawa
  • Publication number: 20160243369
    Abstract: An external controller is disclosed for communicating with an external trial stimulator (ETS) for an implantable medical device. The external controller is programmed with a battery algorithm able to assist a clinician in choosing a suitable implant for the patient based on battery performance parameters estimated for a number of implants during an external trial stimulation phase that precedes implantation of the implant. The algorithm is particularly useful in assisting the clinician in choosing between a rechargeable-battery implant or a primary-battery implant for the patient.
    Type: Application
    Filed: May 2, 2016
    Publication date: August 25, 2016
    Inventors: Dennis A. Vansickle, Robert D. Ozawa
  • Patent number: 9327135
    Abstract: An external controller is disclosed for communicating with an external trial stimulator (ETS) for an implantable medical device. The external controller is programmed with a battery algorithm able to assist a clinician in choosing a suitable implant for the patient based on battery performance parameters estimated for a number of implants during an external trial stimulation phase that precedes implantation of the implant. The algorithm is particularly useful in assisting the clinician in choosing between a rechargeable-battery implant or a primary-battery implant for the patient.
    Type: Grant
    Filed: May 6, 2014
    Date of Patent: May 3, 2016
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Dennis A. Vansickle, Robert D. Ozawa
  • Publication number: 20140358194
    Abstract: An external controller is disclosed for communicating with an external trial stimulator (ETS) for an implantable medical device. The external controller is programmed with a battery algorithm able to assist a clinician in choosing a suitable implant for the patient based on battery performance parameters estimated for a number of implants during an external trial stimulation phase that precedes implantation of the implant. The algorithm is particularly useful in assisting the clinician in choosing between a rechargeable-battery implant or a primary-battery implant for the patient.
    Type: Application
    Filed: May 6, 2014
    Publication date: December 4, 2014
    Applicant: Boston Scientific Neuromodulation Corporation
    Inventors: Dennis A. Vansickle, Robert D. Ozawa