Patents by Inventor Dennis G. Deppe

Dennis G. Deppe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11121523
    Abstract: A semiconductor heterostructure device includes a middle layer including an inner conducting channel and an outer current blocking region. A depleted heterojunction current blocking region (DHCBR) is within the outer current blocking region. The DHCBR includes a first depleting impurity specie including a Column II acceptor, and a second depleting impurity comprising oxygen which increases a depletion of the DHCBR so that the DHCBR forces current to flow into the conducting channel during electrical biasing under normal operation of the semiconductor heterostructure device.
    Type: Grant
    Filed: October 8, 2019
    Date of Patent: September 14, 2021
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventor: Dennis G. Deppe
  • Patent number: 11088509
    Abstract: A semiconductor vertical light source includes upper and lower mirrors with an active region in between, an inner mode confinement region, and an outer current blocking region that includes a common epitaxial layer including an epitaxially regrown interface between the active region and upper mirror. A conducting channel including acceptors is in the inner mode confinement region. The current blocking region includes a first impurity doped region with donors between the epitaxially regrown interface and active region, and a second impurity doped region with acceptors between the first doped region and lower mirror. The outer current blocking region provides a PNPN current blocking region that includes the upper mirror or a p-type layer, first doped region, second doped region, and lower mirror or an n-type layer. The first and second impurity doped region force current flow into the conducting channel during normal operation of the light source.
    Type: Grant
    Filed: January 7, 2020
    Date of Patent: August 10, 2021
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventor: Dennis G. Deppe
  • Patent number: 10886701
    Abstract: A semiconductor vertical light source includes upper and lower mirrors with an active region in between, an inner mode confinement region, and an outer current blocking region that includes a common epitaxial layer including an epitaxially regrown interface between the active region and upper mirror. A conducting channel including acceptors is in the inner mode confinement region. The current blocking region includes a first impurity doped region with donors between the epitaxially regrown interface and active region, and a second impurity doped region with acceptors between the first doped region and lower mirror. The outer current blocking region provides a PNPN current blocking region that includes the upper mirror or a p-type layer, first doped region, second doped region, and lower mirror or an n-type layer. The first and second impurity doped region force current flow into the conducting channel during normal operation of the light source.
    Type: Grant
    Filed: August 26, 2019
    Date of Patent: January 5, 2021
    Assignee: sdPhotonics LLC
    Inventor: Dennis G. Deppe
  • Patent number: 10879671
    Abstract: A semiconductor vertical resonant cavity light source includes an upper and lower mirror that define a vertical resonant cavity. An active region is within the cavity for light generation between the upper and lower mirror. At least one cavity spacer region is between the active region and the upper mirror or lower mirror. The cavity includes an inner mode confinement region and an outer current blocking region. An index guide in the inner mode confinement region is between the cavity spacer region and the upper or lower mirror. The index guide and outer current blocking region each include a lower and upper epitaxial material layer thereon with an epitaxial interface region in between. At least a top surface of the lower material layer includes aluminum in the interface region throughout a full area of an active part of the vertical light source.
    Type: Grant
    Filed: August 9, 2019
    Date of Patent: December 29, 2020
    Assignee: sdPhotonics LLC
    Inventor: Dennis G. Deppe
  • Publication number: 20200295538
    Abstract: A semiconductor vertical light source includes upper and lower minors with an active region in between, an inner mode confinement region, and an outer current blocking region that includes a common epitaxial layer including an epitaxially regrown interface between the active region and upper minor. A conducting channel including acceptors is in the inner mode confinement region. The current blocking region includes a first impurity doped region with donors between the epitaxially regrown interface and active region, and a second impurity doped region with acceptors between the first doped region and lower minor. The outer current blocking region provides a PNPN current blocking region that includes the upper minor or a p-type layer, first doped region, second doped region, and lower minor or an n-type layer. The first and second impurity doped region force current flow into the conducting channel during normal operation of the light source.
    Type: Application
    Filed: January 7, 2020
    Publication date: September 17, 2020
    Inventor: Dennis G. DEPPE
  • Patent number: 10673206
    Abstract: A semiconductor device includes an upper and lower mirror. At least one active region for light generation is between the upper and lower mirror. At least one cavity spacer layer is between at least one of the upper and lower mirror and the active region. The device includes an inner mode confinement region and an outer current blocking region. A depleted heterojunction current blocking region (DHCBR) including a depleting impurity is within the outer current blocking region of ?1 of the upper mirror, lower mirror, and the first active region. A middle layer including a conducting channel is within the inner mode confinement region that is framed by the DHCBR. The DHCBR forces current flow into the conducting channel during normal operation of the light source.
    Type: Grant
    Filed: August 26, 2019
    Date of Patent: June 2, 2020
    Assignee: sdPhotonics LLC
    Inventor: Dennis G. Deppe
  • Publication number: 20200059069
    Abstract: A semiconductor heterostructure device includes a middle layer including an inner conducting channel and an outer current blocking region. A depleted heterojunction current blocking region (DHCBR) is within the outer current blocking region. The DHCBR includes a first depleting impurity specie including a Column II acceptor, and a second depleting impurity comprising oxygen which increases a depletion of the DHCBR so that the DHCBR forces current to flow into the conducting channel during electrical biasing under normal operation of the semiconductor heterostructure device.
    Type: Application
    Filed: October 8, 2019
    Publication date: February 20, 2020
    Inventor: DENNIS G. DEPPE
  • Patent number: 10530127
    Abstract: A semiconductor vertical light source includes upper and lower mirrors with an active region in between, an inner mode confinement region, and an outer current blocking region that includes a common epitaxial layer including an epitaxially regrown interface between the active region and upper mirror. A conducting channel including acceptors is in the inner mode confinement region. The current blocking region includes a first impurity doped region with donors between the epitaxially regrown interface and active region, and a second impurity doped region with acceptors between the first doped region and lower mirror. The outer current blocking region provides a PNPN current blocking region that includes the upper mirror or a p-type layer, first doped region, second doped region, and lower mirror or an n-type layer. The first and second impurity doped region force current flow into the conducting channel during normal operation of the light source.
    Type: Grant
    Filed: June 21, 2018
    Date of Patent: January 7, 2020
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventor: Dennis G. Deppe
  • Patent number: 10483719
    Abstract: A semiconductor device includes an upper and lower mirror. At least one active region for light generation is between the upper and lower mirror. At least one cavity spacer layer is between at least one of the upper and lower mirror and the active region. The device includes an inner mode confinement region and an outer current blocking region. A depleted heterojunction current blocking region (DHCBR) including a depleting impurity is within the outer current blocking region of ?1 of the upper mirror, lower mirror, and the first active region. A middle layer including a conducting channel is within the inner mode confinement region that is framed by the DHCBR. The DHCBR forces current flow into the conducting channel during normal operation of the light source.
    Type: Grant
    Filed: July 12, 2017
    Date of Patent: November 19, 2019
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventor: Dennis G. Deppe
  • Patent number: 10263393
    Abstract: A semiconductor vertical resonant cavity light source includes an upper and lower mirror that define a vertical resonant cavity. An active region is within the cavity for light generation between the upper and lower mirror. At least one cavity spacer region is between the active region and the upper mirror or lower mirror. The cavity includes an inner mode confinement region and an outer current blocking region. An index guide in the inner mode confinement region is between the cavity spacer region and the upper or lower mirror. The index guide and outer current blocking region each include a lower and upper epitaxial material layer thereon with an epitaxial interface region in between. At least a top surface of the lower material layer includes aluminum in the interface region throughout a full area of an active part of the vertical light source.
    Type: Grant
    Filed: February 15, 2018
    Date of Patent: April 16, 2019
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventor: Dennis G. Deppe
  • Publication number: 20190020176
    Abstract: A semiconductor vertical light source includes upper and lower mirrors with an active region in between, an inner mode confinement region, and an outer current blocking region that includes a common epitaxial layer including an epitaxially regrown interface between the active region and upper mirror. A conducting channel including acceptors is in the inner mode confinement region. The current blocking region includes a first impurity doped region with donors between the epitaxially regrown interface and active region, and a second impurity doped region with acceptors between the first doped region and lower mirror. The outer current blocking region provides a PNPN current blocking region that includes the upper mirror or a p-type layer, first doped region, second doped region, and lower mirror or an n-type layer. The first and second impurity doped region force current flow into the conducting channel during normal operation of the light source.
    Type: Application
    Filed: June 21, 2018
    Publication date: January 17, 2019
    Inventor: DENNIS G. DEPPE
  • Publication number: 20190020177
    Abstract: A semiconductor vertical resonant cavity light source includes an upper and lower mirror that define a vertical resonant cavity. An active region is within the cavity for light generation between the upper and lower mirror. At least one cavity spacer region is between the active region and the upper mirror or lower mirror. The cavity includes an inner mode confinement region and an outer current blocking region. An index guide in the inner mode confinement region is between the cavity spacer region and the upper or lower mirror. The index guide and outer current blocking region each include a lower and upper epitaxial material layer thereon with an epitaxial interface region in between. At least a top surface of the lower material layer includes aluminum in the interface region throughout a full area of an active part of the vertical light source.
    Type: Application
    Filed: February 15, 2018
    Publication date: January 17, 2019
    Inventor: DENNIS G. DEPPE
  • Patent number: 10033156
    Abstract: A semiconductor vertical light source includes an upper mirror and a lower mirror. An active region is between the upper and lower mirror. The light source includes an inner mode confinement region and outer current blocking region. The outer current blocking region includes a common epitaxial layer that includes an epitaxially regrown interface which is between the active region and upper mirror, and a conducting channel including acceptors is in the inner mode confinement region. The current blocking region includes a first impurity doped region with donors between the epitaxially regrown interface and active region, and a second impurity doped region with acceptors is between the first doped region and lower mirror. The outer current blocking region provides a PNPN current blocking region that includes the upper mirror or a p-type layer, first doped region, second doped region, and lower mirror or an n-type layer.
    Type: Grant
    Filed: July 12, 2017
    Date of Patent: July 24, 2018
    Assignees: University of Central Florida Research Foundation, Inc., sdPhotonics, LLC
    Inventor: Dennis G. Deppe
  • Publication number: 20180019302
    Abstract: A semiconductor device includes an upper and lower mirror. At least one active region for light generation is between the upper and lower mirror. At least one cavity spacer layer is between at least one of the upper and lower mirror and the active region. The device includes an inner mode confinement region and an outer current blocking region. A depleted heterojunction current blocking region (DHCBR) including a depleting impurity is within the outer current blocking region of ?1 of the upper mirror, lower mirror, and the first active region. A middle layer including a conducting channel is within the inner mode confinement region that is framed by the DHCBR. The DHCBR forces current flow into the conducting channel during normal operation of the light source.
    Type: Application
    Filed: July 12, 2017
    Publication date: January 18, 2018
    Inventor: DENNIS G. DEPPE
  • Publication number: 20180019572
    Abstract: A semiconductor vertical light source includes an upper mirror and a lower mirror. An active region is between the upper and lower mirror. The light source includes an inner mode confinement region and outer current blocking region. The outer current blocking region includes a common epitaxial layer that includes an epitaxially regrown interface which is between the active region and upper mirror, and a conducting channel including acceptors is in the inner mode confinement region. The current blocking region includes a first impurity doped region with donors between the epitaxially regrown interface and active region, and a second impurity doped region with acceptors is between the first doped region and lower mirror. The outer current blocking region provides a PNPN current blocking region that includes the upper mirror or a p-type layer, first doped region, second doped region, and lower mirror or an n-type layer.
    Type: Application
    Filed: July 12, 2017
    Publication date: January 18, 2018
    Inventor: DENNIS G. DEPPE
  • Patent number: 9705283
    Abstract: A semiconductor vertical resonant cavity light source includes an upper mirror and a lower mirror that define a vertical resonant cavity. A first active region is within the vertical resonant cavity for light generation between the upper mirror and lower mirror. The vertical resonant cavity includes an inner mode confinement region and an outer current blocking region. A depleted heterojunction current blocking region (DHCBR) is within the outer current blocking region of at least one of the upper mirror, lower mirror, and first active region. A conducting channel within the inner mode confinement region is framed by the DHCBR. The DHCBR forces current flow into the conducting channel during operation of the light source. A cavity length within the inner mode confinement region equals or exceeds the cavity length formed in the DHCBR.
    Type: Grant
    Filed: May 20, 2015
    Date of Patent: July 11, 2017
    Assignees: University of Central Florida Research Foundation, Inc., sdPhotonics, LLC
    Inventors: Dennis G. Deppe, Guowei Zhao
  • Patent number: 9118162
    Abstract: A composite light source includes a substrate having a top surface, and a first vertical light source formed in the substrate. The first light source includes least a lower mirror, a first active region above the lower mirror, wherein the first active region has a thickness sufficient when electrically pumped to emit predominantly a spontaneous vertical emission from the first active region towards the top surface having an angular range of at least (?) 30°. A second light source is formed in the substrate above the first active region including a second active region. The spontaneous vertical emission is at a first wavelength ?1 that optically drives said second active region to provide an emission at a second wavelength ?2, wherein ?2>?1.
    Type: Grant
    Filed: May 20, 2014
    Date of Patent: August 25, 2015
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventor: Dennis G. Deppe
  • Publication number: 20140247853
    Abstract: A composite light source includes a substrate having a top surface, and a first vertical light source formed in the substrate. The first light source includes least a lower mirror, a first active region above the lower mirror, wherein the first active region has a thickness sufficient when electrically pumped to emit predominantly a spontaneous vertical emission from the first active region towards the top surface having an angular range of at least (?) 30°. A second light source is formed in the substrate above the first active region including a second active region. The spontaneous vertical emission is at a first wavelength ?1 that optically drives said second active region to provide an emission at a second wavelength ?2, wherein ?2>?1.
    Type: Application
    Filed: May 20, 2014
    Publication date: September 4, 2014
    Applicant: University of Central Florida Research Foundation, Inc.
    Inventor: DENNIS G. DEPPE
  • Patent number: 8774246
    Abstract: A semiconductor vertical resonant cavity light source includes an upper mirror and a lower minor that define a vertical resonant cavity. A first active region is within the vertical resonant cavity for light generation between the upper minor and lower mirror. The vertical resonant cavity includes an inner mode confinement region and an outer current blocking region. A depleted heterojunction current blocking region (DHCBR) is within the outer current blocking region of at least one of the upper minor, lower minor, and first active region. A conducting channel within the inner mode confinement region is framed by the DHCBR. The DHCBR forces current flow into the conducting channel during operation of the light source.
    Type: Grant
    Filed: January 17, 2012
    Date of Patent: July 8, 2014
    Assignees: University of Central Florida Research Foundation, Inc., sdPhotonics, LLC
    Inventors: Dennis G. Deppe, Sabine M. Freisem
  • Patent number: 8585207
    Abstract: Method and system for an up conversion lighting system for use with displays. The system includes an up converter-semiconductor light source for emitting an up conversion emission and a spectrally selective optical element in the path of the emission for selectively passing selected wavelengths. The optical element has a coating selected to pass selected wavelengths. The up converter-semiconductor light source includes an up converter for emitting the up conversion emission, a semiconductor light source coupled with the up converter to excite an up conversion material within the up converter to emit an up conversion emission and a spatial light modulator for modulating the up conversion emission. For a full color display, the up converter includes a red, green and blue up converter and a separate a light source coupled with the red, green and blue up converters.
    Type: Grant
    Filed: February 5, 2009
    Date of Patent: November 19, 2013
    Assignee: University of Central Florida Research Research Foundation, Inc.
    Inventors: Michael Bass, Dennis G. Deppe