Patents by Inventor Dennis G. Peiffer

Dennis G. Peiffer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140186246
    Abstract: Methods are provided for synthesizing novel types of self-assembled siloxanes, such as polysiloxanes, with a sufficiently high density of amine functional groups to be useful for CO2 capture and release processes. Additionally, it has been unexpectedly found that some self-assembled polysiloxanes can be used for high temperature adsorption of CO2.
    Type: Application
    Filed: November 25, 2013
    Publication date: July 3, 2014
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: David C. Calabro, Quanchang Li, Dennis G. Peiffer, Mobae Afeworki, Stephen M. Cundy, Charanjit S. Paur, Peter I. Ravikovitch
  • Patent number: 8715545
    Abstract: The present systems and methods utilize a polyamic acid solution as a precursor to form a polyimide bead having desired properties. The polyamic acid solution may be formed into a polyamic acid droplet. The polyamic acid droplet is then processed to form a polyamic acid bead, such as by extraction of solvent to concentrate the polyamic acid or by partial chemical imidization of the polyamic acid. The polyamic acid bead is then better able to retain its shape during subsequent processing steps, such as drying and pressurizing, before final thermal imidization.
    Type: Grant
    Filed: September 3, 2010
    Date of Patent: May 6, 2014
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Dennis G. Peiffer, Barbara Carstensen, Richard S. Polizzotti, Arnold Lustiger, David C. Dalrymple, Walter T. Matuszek
  • Patent number: 8557027
    Abstract: This disclosure involves an adsorption-desorption material, e.g., crosslinked epoxy-amine material having an Mw from about 500 to about 1×106, a total pore volume from about 0.2 cc/g to about 2.0 cc/g, and a CO2 adsorption capacity of at least about 0.2 millimoles CO2 per gram of crosslinked material, and/or linear epoxy-amine material having an Mw from about 160 to about 1×106, a total pore volume from about 0.2 cc/g to about 2.0 cc/g, and a CO2 adsorption capacity of at least about 0.2 millimoles CO2 per gram of linear material. This disclosure also involves processes for preparing the crosslinked epoxy-amine materials and linear epoxy-amine materials, as well as selective removal of CO2 and/or other acid gases from a gaseous stream using the epoxy-amine materials.
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: October 15, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Dennis G. Peiffer, David C. Calabro, Quanchang Li, Mobae Afeworki, Stephen M. Cundy
  • Publication number: 20120298558
    Abstract: This invention relates to a process for separating a hydrocarbon stream via a filtration process to produce an upgraded permeate stream with decreased Conradson Carbon Residue (“CCR”) content. The invention involves the modification of a porous ceramic filter by functionalizing the surface of the ceramic filter with an multi-ring aromatic-diimide polymer. Preferably, the multi-ring aromatic-diimide polymer is comprised of a multi-ring aromatic monomer component. The functionalized filters of the present invention can be used in a process to selectively separate components of a hydrocarbon stream to produce an improved permeate (or “filtrate”) product stream with a lower CCR content and improved processing capabilities.
    Type: Application
    Filed: May 16, 2012
    Publication date: November 29, 2012
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: DAVID C. CALABRO, DENNIS G. PEIFFER, BENJAMIN A. McCOOL, STANLEY E. JAKUBOWICZ
  • Publication number: 20120231979
    Abstract: The present systems and methods utilize a polyamic acid solution as a precursor to form a polyimide bead having desired properties. The polyamic acid solution may be formed into a polyamic acid droplet. The polyamic acid droplet is then processed to form a polyamic acid bead, such as by extraction of solvent to concentrate the polyamic acid or by partial chemical imidization of the polyamic acid. The polyamic acid bead is then better able to retain its shape during subsequent processing steps, such as drying and pressurizing, before final thermal imidization.
    Type: Application
    Filed: September 3, 2010
    Publication date: September 13, 2012
    Inventors: Dennis G. Peiffer, Barbara Carstensen, Richard S. Polizzotti, Paul J. Tindall, David C. Dalrymple
  • Publication number: 20120225799
    Abstract: The present systems and methods utilize a polyamic acid solution as a precursor to form a polyimide bead having desired properties. The polyamic acid solution may be formed into a polyamic acid droplet. The polyamic acid droplet is then processed to form a polyamic acid bead, such as by extraction of solvent to concentrate the polyamic acid or by partial chemical imidization of the polyamic acid. The polyamic acid bead is then better able to retain its shape during subsequent processing steps, such as drying and pressurizing, before final thermal imidization.
    Type: Application
    Filed: September 3, 2010
    Publication date: September 6, 2012
    Inventors: Dennis G. Peiffer, Barbara Carstensen, Richard S. Polizzotti, Paul J. Tindall, David C. Dalrymple
  • Publication number: 20120223450
    Abstract: The present systems and methods utilize a polyamic acid solution as a precursor to form a polyimide bead having desired properties. The polyamic acid solution may be formed into a polyamic acid droplet. The polyamic acid droplet is then processed to form a polyamic acid bead, such as by extraction of solvent to concentrate the polyamic acid or by partial chemical imidization of the polyamic acid. The polyamic acid bead is then better able to retain its shape during subsequent processing steps, such as drying and pressurizing, before final thermal imidization.
    Type: Application
    Filed: September 3, 2010
    Publication date: September 6, 2012
    Inventors: Dennis G. Peiffer, Barbara Carstensen, Richard S. Polizzotti, Arnold Lustiger, David C. Dalrymple, Walter T. Matuszek
  • Publication number: 20120164044
    Abstract: An adsorption-desorption material, in particular, crosslinked vinylepoxide-amine polymeric materials having an Mw from about 500 to about 1×106, a total pore volume from about 0.2 cc/g to about 2.0 cc/g, and an adsorption capacity of at least about 0.2 millimoles adsorbed CO2 per gram of adsorption-desorption material, and linear vinylepoxide-amine polymeric materials having an Mw from about 140 to about 1×106, a total pore volume from about 0.2 cc/g to about 2.0 cc/g, and an adsorption capacity of at least about 0.2 millimoles adsorbed CO2 per gram of adsorption-desorption material. This disclosure also relates to processes for preparing the crosslinked and linear vinylepoxide-amine materials, as well as to selective removal of CO2 and/or other acid gases from a gaseous stream using the vinylepoxide materials.
    Type: Application
    Filed: December 21, 2011
    Publication date: June 28, 2012
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Dennis G. Peiffer, David C. Calabro, Quanchang Li, Mobae Afeworki
  • Publication number: 20120164045
    Abstract: This disclosure involves an adsorption-desorption material, e.g., crosslinked polyvinyl-amine material having an Mw from about 500 to about 1×106, total pore volume from about 0.2 cc/g to about 2.0 cc/g, and a CO2 adsorption capacity of at least about 0.2 millimoles per gram of crosslinked material, and/or linear polyvinyl-amine material having an Mw from about 160 to about 1×106, total pore volume from about 0.2 cc/g to about 2.0 cc/g, and a CO2 adsorption capacity of at least about 0.2 millimoles per gram of linear material. This disclosure also involves processes for preparing the crosslinked polyvinyl-amine materials and linear polyvinyl-amine materials, as well as selective removal of CO2 and/or other acid gases from a gaseous stream using the polyvinyl-amine materials.
    Type: Application
    Filed: December 21, 2011
    Publication date: June 28, 2012
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Dennis G. Peiffer, David C. Calabro, Quanchang Li, Mobae Afeworki
  • Publication number: 20120160097
    Abstract: This disclosure involves an adsorption-desorption material, e.g., crosslinked epoxy-amine material having an Mw from about 500 to about 1×106, a total pore volume from about 0.2 cc/g to about 2.0 cc/g, and a CO2 adsorption capacity of at least about 0.2 millimoles CO2 per gram of crosslinked material, and/or linear epoxy-amine material having an Mw from about 160 to about 1×106, a total pore volume from about 0.2 cc/g to about 2.0 cc/g, and a CO2 adsorption capacity of at least about 0.2 millimoles CO2 per gram of linear material. This disclosure also involves processes for preparing the crosslinked epoxy-amine materials and linear epoxy-amine materials, as well as selective removal of CO2 and/or other acid gases from a gaseous stream using the epoxy-amine materials.
    Type: Application
    Filed: December 21, 2011
    Publication date: June 28, 2012
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Dennis G. Peiffer, David C. Calabro, Quanchang Li, Mobae Afeworki, Stephen M. Cundy
  • Publication number: 20120164043
    Abstract: An adsorption-desorption material, in particular, crosslinked organo-amine polymeric materials having an Mw from about 500 to about 1×106, a total pore volume from about 0.2 cc/g to about 2.0 cc/g, and an adsorption capacity of at least about 0.2 millimoles adsorbed CO2 per gram of adsorption-desorption material, and linear organo-amine polymeric materials having an Mw from about 160 to about 1×106, a total pore volume from about 0.2 cc/g to about 2.0 cc/g, and an adsorption capacity of at least about 0.2 millimoles adsorbed CO2 per gram of adsorption-desorption material. This disclosure also relates to processes for preparing the crosslinked and linear organo-amine materials, as well as to selective removal of CO2 and/or other acid gases from a gaseous stream using the adsorption-desorption materials.
    Type: Application
    Filed: December 21, 2011
    Publication date: June 28, 2012
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Dennis G. Peiffer, David C. Calabro, Quanchang Li, Mobae Afeworki, Stephen M. Cundy
  • Publication number: 20120061614
    Abstract: A method is described for separating CO2 and/or H2S from a mixed gas stream by contacting the gas stream with a non-aqueous, liquid absorbent medium of a primary and/or secondary aliphatic amine, preferably in a non-aqueous, polar, aprotic solvent under conditions sufficient for sorption of at least some of the CO2. The solution containing the absorbed CO2 can then be treated to desorb the acid gas. The method is usually operated as a continuous cyclic sorption-desorption process, with the sorption being carried out in a sorption zone where a circulating stream of the liquid absorbent contacts the gas stream to form a CO2-rich sorbed solution, which is then cycled to a regeneration zone for desorption of the CO2 (advantageously at <100° C.). Upon CO2 release, the regenerated lean solution can be recycled to the sorption tower. CO2:(primary+secondary amine) adsorption molar ratios >0.5:1 (approaching 1:1) may be achieved.
    Type: Application
    Filed: September 9, 2011
    Publication date: March 15, 2012
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: David C. Calabro, Lisa S. Baugh, Pavel Kortunov, Benjamin A. McCool, Michael Siskin, Dennis G. Peiffer, Quanchang Li
  • Patent number: 8083946
    Abstract: This invention relates to the fabrication of a polymeric membrane and a process for utilizing the polymeric membrane for separating components of a feedstream. More particularly, but not by way of limitation, this invention relates to the fabrication of a polymeric membrane and a process for utilizing the polymeric membrane in the separation of aromatics from a hydrocarbon based feedstream. The membranes of the present invention possess low soft segment glass transition temperatures and improved separation characteristics.
    Type: Grant
    Filed: August 3, 2007
    Date of Patent: December 27, 2011
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Craig Y. Sabottke, Bal K. Kaul, Dennis G. Peiffer
  • Patent number: 7997426
    Abstract: A multi-layer membrane structure including a crosslinked polymeric membrane, such as a crosslinked polyvinyl sulfate membrane or a crosslinked copolymer polyvinyl sulfate and polyvinyl alcohol membrane, is provided. The membrane structure is suitable for use in an acid environment, and is suitable for recovering acid from a feed mixture comprising acid, hydrocarbons and water.
    Type: Grant
    Filed: August 7, 2007
    Date of Patent: August 16, 2011
    Assignee: Exxonmobil Research and Engineering Company
    Inventors: Bhupender S. Minhas, Dennis G. Peiffer, Michael Mayers, Lloyd S. White, William A. Feehley
  • Patent number: 7980329
    Abstract: A method and system for drilling a wellbore is described. The system includes a wellbore with a variable density drilling mud, drilling pipe, a bottom hole assembly disposed in the wellbore and a drilling mud processing unit in fluid communication with the wellbore. The variable density drilling mud has compressible particles and drilling fluid. The bottom hole assembly is coupled to the drilling pipe, while the drilling mud processing unit is configured to separate the compressible particles from the variable density drilling mud. The compressible particles in this embodiment may include compressible hollow objects filled with pressurized gas and configured to maintain the mud weight between the fracture pressure gradient and the pore pressure gradient. In addition, the system and method may also manage the use of compressible particles having different characteristics, such as size, during the drilling operations.
    Type: Grant
    Filed: January 22, 2010
    Date of Patent: July 19, 2011
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Paul Matthew Spiecker, Pavlin B. Entchev, Ramesh Gupta, Richard Polizzotti, Barbara Carstensen, Dennis G. Peiffer, Norman Pokutylowicz
  • Patent number: 7842124
    Abstract: This invention relates to a polymeric membrane composition comprising an associating polymer. The polymer coating is characterized as having hard and soft segments where the hard segment comprises TMPA, combined with HDPA. The membrane may utilize a porous substrate.
    Type: Grant
    Filed: August 7, 2007
    Date of Patent: November 30, 2010
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Randall D. Partridge, Dennis G. Peiffer, David C. Dalrymple, Walter Weissman
  • Patent number: 7837880
    Abstract: A crosslinked polymeric membrane, such as a crosslinked polyvinyl sulfate membrane or a crosslinked copolymer polyvinyl sulfate and polyvinyl alcohol membrane, is provided. The membrane is suitable for use in an acid environment, and is suitable for recovering acid from a feed mixture comprising acid, hydrocarbons and water.
    Type: Grant
    Filed: August 7, 2007
    Date of Patent: November 23, 2010
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Bhupender S. Minhas, Dennis G. Peiffer, David C. Dalrymple
  • Patent number: 7803276
    Abstract: This invention relates to a process for recycling acid used to remove nitrogen contaminants from hydrocarbons using polymeric membranes to separate spent acid from the acid extraction of hydrocarbons into acid for recycle and acid for regeneration.
    Type: Grant
    Filed: December 1, 2004
    Date of Patent: September 28, 2010
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Bhupender S. Minhas, Dennis G. Peiffer, Jeffrey S. Beck, David L. Stern, Tomas R. Melli
  • Patent number: 7785471
    Abstract: This invention relates to a polymer membrane assembly for selective separation of permeate compositions by carbon weight. This invention also relates to a process for utilizing these polymer membrane assemblies in separation processes for selective carbon weight separation of hydrocarbon feedstreams components. More particularly, but not by way of limitation, this invention relates to the use membrane assemblies for the selective separation by carbon weight of aromatics from a hydrocarbon based feedstream.
    Type: Grant
    Filed: August 3, 2007
    Date of Patent: August 31, 2010
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Craig Y. Sabottke, Bal K. Kaul, Dennis G. Peiffer
  • Patent number: 7749387
    Abstract: This invention relates to the composition of an integrally-layered polymeric membrane and a process for utilizing the integrally-layered polymeric membrane components of a feedstream. More particularly, but not by way of limitation, this invention relates to the composition of an integrally-layered polymeric membrane and a process for utilizing the integrally-layered polymeric membrane in the separation of aromatics from a hydrocarbon based feedstream. The polymeric membranes of the present invention are fabricated by chemically crosslinking adjacent polymer membrane layers of the same or differing copolymer solutions to produce an integrally-layered polymeric membrane with improved separations properties.
    Type: Grant
    Filed: August 3, 2007
    Date of Patent: July 6, 2010
    Assignee: Exxonmobil Research and Engineering Company
    Inventors: Craig Y. Sabottke, Bal K. Kaul, Dennis G. Peiffer