Patents by Inventor Dennis Griffin

Dennis Griffin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20040105806
    Abstract: A method for forming a superhard polycrystalline diamond or diamond-like element with greatly improved resistance to thermal degradation without loss of impact strength. Collectively called PCD elements, these elements are formed with a binder-catalyzing material in a high-temperature, high-pressure process. The PCD element has a plurality of partially bonded diamond or diamond-like crystals forming at least one continuous diamond matrix, and the interstices among the diamond crystals forming at least one continuous interstitial matrix containing a catalyzing material. The element has a working surface and a body, where a portion of the interstitial matrix in the body adjacent to the working surface is substantially free of the catalyzing material to a depth from the working surface, the remaining interstitial matrix contains the catalyzing material, causing a 950 degrees C. temperature at the working surface to be less than 750 degrees C. at the depth.
    Type: Application
    Filed: October 1, 2003
    Publication date: June 3, 2004
    Inventors: Nigel Dennis Griffin, Peter Raymond Hughes
  • Patent number: 6739214
    Abstract: The present invention provides a method of making an earth boring drill bit having a superhard polycrystalline diamond or diamond-like element with greatly improved resistance to thermal degradation without loss of impact strength. Collectively called PCD elements, these elements are formed with a binder-catalyzing material in a high-temperature, high-pressure process. The PCD element has a plurality of partially bonded diamond or diamond-like crystals forming at least one continuous diamond matrix, and the interstices among the diamond crystals forming at least one continuous interstitial matrix containing a catalyzing material. The element has a working surface and a body, where a portion of the interstitial matrix in the body adjacent to the working surface is substantially free of the catalyzing material, and the remaining interstitial matrix contains the catalyzing material.
    Type: Grant
    Filed: November 1, 2002
    Date of Patent: May 25, 2004
    Assignee: ReedHycalog (UK) Limited
    Inventors: Nigel Dennis Griffin, Peter Raymond Hughes
  • Publication number: 20040007394
    Abstract: A polycrystalline diamond cutter and method of manufacturing a polycrystalline diamond cutter is disclosed. The method of manufacture comprising assembling a first substrate component, a second notched substrate component and diamond crystals into a desired configuration. The assembly is subjected to high temperature and high pressure conditions to cause the diamond crystals to bond to one another and to the first and second substrate components. The method forms a cutter having a single body of polycrystalline diamond bonded to the substrate components.
    Type: Application
    Filed: August 21, 2002
    Publication date: January 15, 2004
    Inventor: Nigel Dennis Griffin
  • Publication number: 20040007393
    Abstract: A polycrystalline diamond cutter and method of manufacturing a polycrystalline diamond cutter is disclosed. The method of manufacture comprising assembling a first substrate component, a second substrate component and diamond crystals into a desired configuration. The assembly is subjected to high temperature and high pressure conditions to cause the diamond crystals to bond to one another and to the first and second substrate components. The method forms a cutter having a single body of polycrystalline diamond bonded to the substrate components.
    Type: Application
    Filed: July 12, 2002
    Publication date: January 15, 2004
    Inventor: Nigel Dennis Griffin
  • Publication number: 20030235691
    Abstract: The present invention provides a superhard polycrystalline diamond or diamond-like element with greatly improved resistance to thermal degradation without loss of impact strength. Collectively called PCD elements, these elements are formed with a binder-catalyzing material in a high-temperature, high-pressure process. The PCD element has a plurality of partially bonded diamond or diamond-like crystals forming at least one continuous diamond matrix, and the interstices among the diamond crystals forming at least one continuous interstitial matrix containing a catalyzing material. The element has a working surface and a body, where a portion of the interstitial matrix in the body adjacent to the working surface is substantially free of the catalyzing material, and the remaining interstitial matrix contains the catalyzing material.
    Type: Application
    Filed: June 20, 2003
    Publication date: December 25, 2003
    Inventors: Nigel Dennis Griffin, Peter Raymond Hughes
  • Patent number: 6634599
    Abstract: An airborne store suspension and release arrangement includes two slender “Tee” hangers located one on either side of a vertical plane through the center of the store. Each hanger has a narrow strut portion mounted on the store by one end and an enlarged cross section portion at the other end of the narrow strut portion. The enlarged cross section portion of each hanger is clamped by releasable clamps mounted in a store carrying aircraft. The store and the aircraft are formed with surfaces which abut one another when the store is suspended from the aircraft and the enlarged cross section portions of the hangers are clamped by the clamps. The arrangement of the hangers, the clamps and the abutting surfaces establishes a couple in reaction to a rolling moment to which the store is subjected during maneuvering of the aircraft. Only one such a slender ‘Tee’ hanger is aligned with the geometrical center of the store in an alternative embodiment.
    Type: Grant
    Filed: January 4, 2002
    Date of Patent: October 21, 2003
    Assignee: Flight Refuelling Limited
    Inventor: Dennis Griffin
  • Publication number: 20030183426
    Abstract: The present invention provides a superhard polycrystalline diamond or diamond-like element with improved wear resistance. Collectively called PCD elements for the purposes of this specification, these elements are formed with a binder-catalyzing material in a high-temperature, high-pressure (HTHP) process. The diamond material is formed and integrally bonded to a substrate containing the catalyzing material during the HTHP process. The diamond body so formed has a working surface, a plurality of crystals being exposed at the working surface, and wherein the exposed crystals are substantially free of microfractures. The exposed parts of the exposed crystals are of rounded or domed form.
    Type: Application
    Filed: March 21, 2003
    Publication date: October 2, 2003
    Inventors: Nigel Dennis Griffin, Peter Raymond Hughes
  • Patent number: 6601662
    Abstract: Disclosed is a polycrystalline diamond or diamond-like element with greatly improved wear resistance without loss of impact strength. These elements are formed with a binder-catalyzing material in a high-temperature, high-pressure (HTHP) process. The PCD element has a body with a plurality of bonded diamond or diamond-like crystals forming a continuous diamond matrix that has a diamond volume density greater than 85%. Interstices among the diamond crystals form a continuous interstitial matrix containing a catalyzing material. The diamond matrix table is formed and integrally bonded with a metallic substrate containing the catalyzing material during the HTHP process. The diamond matrix body has a working surface, where a first portion of the interstitial matrix in the body adjacent to the working surface is substantially free of the catalyzing material, and a second portion of the interstitial matrix in the body adjacent to the working surface contains the catalyzing material.
    Type: Grant
    Filed: September 6, 2001
    Date of Patent: August 5, 2003
    Assignee: Grant Prideco, L.P.
    Inventors: Terry R. Matthias, Nigel Dennis Griffin, Peter Raymond Hughes
  • Patent number: 6592985
    Abstract: The present invention provides a superhard polycrystalline diamond or diamond-like element with greatly improved resistance to thermal degradation without loss of impact strength. Collectively called PCD elements, these elements are formed with a binder-catalyzing material in a high-temperature, high-pressure process. The PCD element has a plurality of partially bonded diamond or diamond-like crystals forming at least one continuous diamond matrix, and the interstices among the diamond crystals forming at least one continuous interstitial matrix containing a catalyzing material. The element has a working surface and a body, where a portion of the interstitial matrix in the body adjacent to the working surface is substantially free of the catalyzing material, and the remaining interstitial matrix contains the catalyzing material.
    Type: Grant
    Filed: July 13, 2001
    Date of Patent: July 15, 2003
    Assignee: Camco International (UK) Limited
    Inventors: Nigel Dennis Griffin, Peter Raymond Hughes
  • Patent number: 6589640
    Abstract: The present invention provides a superhard polycrystalline diamond or diamond-like element with greatly improved resistance to thermal degradation without loss of impact strength. Collectively called PCD elements, these elements are formed with a binder-catalyzing material in a high-temperature, high-pressure process. The PCD element has a plurality of partially bonded diamond or diamond-like crystals forming at least one continuous diamond matrix, and the interstices among the diamond crystals forming at least one continuous interstitial matrix containing a catalyzing material. The element has a working surface and a body, where a portion of the interstitial matrix in the body adjacent to the working surface is substantially free of the catalyzing material, and the remaining interstitial matrix contains the catalyzing material.
    Type: Grant
    Filed: November 1, 2002
    Date of Patent: July 8, 2003
    Inventors: Nigel Dennis Griffin, Peter Raymond Hughes
  • Patent number: 6585064
    Abstract: The present invention provides an earth boring drill bit with a superhard polycrystalline diamond or diamond-like element with greatly improved resistance to thermal degradation without loss of impact strength. Collectively called PCD elements, these elements are formed with a binder-catalyzing material in a high-temperature, high-pressure process. The PCD element has a plurality of partially bonded diamond or diamond-like crystals forming at least one continuous diamond matrix, and the interstices among the diamond crystals forming at least one continuous interstitial matrix containing a catalyzing material. The element has a working surface and a body, where a portion of the interstitial matrix in the body adjacent to the working surface is substantially free of the catalyzing material, and the remaining interstitial matrix contains the catalyzing material. This translates to higher wear resistance in cutting applications and has advantages in numerous other applications.
    Type: Grant
    Filed: November 4, 2002
    Date of Patent: July 1, 2003
    Inventors: Nigel Dennis Griffin, Peter Raymond Hughes
  • Patent number: 6562462
    Abstract: Disclosed is a polycrystalline diamond or diamond-like element with greatly improved wear resistance without loss of impact strength. These elements are formed with a binder-catalyzing material in a high-temperature, high-pressure (HTHP) process. The PCD element has a body with a plurality of bonded diamond or diamond-like crystals forming a continuous diamond matrix that has a diamond volume density greater than 85%. Interstices among the diamond crystals form a continuous interstitial matrix containing a catalyzing material. The diamond matrix table is formed and integrally bonded with a metallic substrate containing the catalyzing material during the HTHP process. The diamond matrix body has a working surface, where a portion of the interstitial matrix in the body adjacent to the working surface is substantially free of the catalyzing material, and the remaining interstitial matrix contains the catalyzing material.
    Type: Grant
    Filed: December 20, 2001
    Date of Patent: May 13, 2003
    Assignee: Camco International (UK) Limited
    Inventors: Nigel Dennis Griffin, Peter Raymond Hughes
  • Patent number: 6544308
    Abstract: Disclosed is a polycrystalline diamond or diamond-like element with greatly improved wear resistance without loss of impact strength. These elements are formed with a binder-catalyzing material in a high-temperature, high-pressure (HTHP) process. The PCD element has a body with a plurality of bonded diamond or diamond-like crystals forming a continuous diamond matrix that has a diamond volume density greater than 85%. Interstices among the diamond crystals form a continuous interstitial matrix containing a catalyzing material. The diamond matrix table is formed and integrally bonded with a metallic substrate containing the catalyzing material during the HTHP process. The diamond matrix body has a working surface, where a portion of the interstitial matrix in the body adjacent to the working surface is substantially free of the catalyzing material, and the remaining interstitial matrix contains the catalyzing material.
    Type: Grant
    Filed: August 30, 2001
    Date of Patent: April 8, 2003
    Assignee: Camco International (UK) Limited
    Inventors: Nigel Dennis Griffin, Peter Raymond Hughes
  • Publication number: 20030037640
    Abstract: The present invention provides a method of making an earth boring drill bit having a superhard polycrystalline diamond or diamond-like element with greatly improved resistance to thermal degradation without loss of impact strength. Collectively called PCD elements, these elements are formed with a binder-catalyzing material in a high-temperature, high-pressure process. The PCD element has a plurality of partially bonded diamond or diamond-like crystals forming at least one continuous diamond matrix, and the interstices among the diamond crystals forming at least one continuous interstitial matrix containing a catalyzing material. The element has a working surface and a body, where a portion of the interstitial matrix in the body adjacent to the working surface is substantially free of the catalyzing material, and the remaining interstitial matrix contains the catalyzing material.
    Type: Application
    Filed: November 1, 2002
    Publication date: February 27, 2003
    Inventors: Nigel Dennis Griffin, Peter Raymond Hughes
  • Publication number: 20030035958
    Abstract: The present invention provides an earth boring drill bit with a superhard polycrystalline diamond or diamond-like element with greatly improved resistance to thermal degradation without loss of impact strength. Collectively called PCD elements, these elements are formed with a binder-catalyzing material in a high-temperature, high-pressure process. The PCD element has a plurality of partially bonded diamond or diamond-like crystals forming at least one continuous diamond matrix, and the interstices among the diamond crystals forming at least one continuous interstitial matrix containing a catalyzing material. The element has a working surface and a body, where a portion of the interstitial matrix in the body adjacent to the working surface is substantially free of the catalyzing material, and the remaining interstitial matrix contains the catalyzing material. This translates to higher wear resistance in cutting applications and has advantages in numerous other applications.
    Type: Application
    Filed: November 4, 2002
    Publication date: February 20, 2003
    Inventors: Nigel Dennis Griffin, Peter Raymond Hughes
  • Publication number: 20030034182
    Abstract: The present invention provides a superhard polycrystalline diamond or diamond-like element with greatly improved resistance to thermal degradation without loss of impact strength. Collectively called PCD elements, these elements are formed with a binder-catalyzing material in a high-temperature, high-pressure process. The PCD element has a plurality of partially bonded diamond or diamond-like crystals forming at least one continuous diamond matrix, and the interstices among the diamond crystals forming at least one continuous interstitial matrix containing a catalyzing material. The element has a working surface and a body, where a portion of the interstitial matrix in the body adjacent to the working surface is substantially free of the catalyzing material, and the remaining interstitial matrix contains the catalyzing material.
    Type: Application
    Filed: November 1, 2002
    Publication date: February 20, 2003
    Inventors: Nigel Dennis Griffin, Peter Raymond Hughes
  • Publication number: 20030035957
    Abstract: The present invention provides a superhard polycrystalline diamond or diamond-like element with greatly improved resistance to thermal degradation without loss of impact strength. Collectively called PCD elements, these elements are formed with a binder-catalyzing material in a high-temperature, high-pressure process. The PCD element has a plurality of partially bonded diamond or diamond-like crystals forming at least one continuous diamond matrix, and the interstices among the diamond crystals forming at least one continuous interstitial matrix containing a catalyzing material. The element has a working surface and a body, where a portion of the interstitial matrix in the body adjacent to the working surface is substantially free of the catalyzing material, and the remaining interstitial matrix contains the catalyzing material.
    Type: Application
    Filed: November 1, 2002
    Publication date: February 20, 2003
    Inventors: Nigel Dennis Griffin, Peter Raymond Hughes
  • Patent number: 6517902
    Abstract: A method of thermally treating a preform element, of the kind having a facing table of polycrystalline diamond bonded to a substrate of cemented tungsten carbide, comprises the steps of: (a) heating the element to a soaking temperature of 550-625° C., and preferably about 600° C., (b) maintaining the element at that temperature for at least one hour, and (c) cooling the element to ambient temperature. The resulting preform element has a substrate with a cobalt binder including a substrate interface zone with at least 30 percent by volume of the cobalt binder a hexagonal close packed crystal structure. This reduces the risk of cracking or delamination of the element in use.
    Type: Grant
    Filed: April 6, 2001
    Date of Patent: February 11, 2003
    Assignee: Camco International (UK) Limited
    Inventors: Eric F. Drake, Harold A. Sreshta, Nigel Dennis Griffin
  • Publication number: 20030021995
    Abstract: Griffin, Nigel, et al78.1081-1.3-29 Disclosed is a method for manufacturing a polycrystalline diamond or diamond-like element with greatly improved wear resistance without loss of impact strength. These elements are formed with a binder-catalyzing material in a high-temperature, high-pressure (HTHP) process. The PCD element has a body with a plurality of bonded diamond or diamond-like crystals forming a continuous diamond matrix that has a diamond volume density greater than 85%. Interstices among the diamond crystals form a continuous interstitial matrix containing a catalyzing material. The diamond matrix table is formed and integrally bonded with a metallic substrate containing the catalyzing material during the HTHP process. The diamond matrix body has a working surface, where a portion of the interstitial matrix in the body adjacent to the working surface is substantially free of the catalyzing material, and the remaining interstitial matrix contains the catalyzing material.
    Type: Application
    Filed: October 9, 2002
    Publication date: January 30, 2003
    Inventors: Nigel Dennis Griffin, Peter Raymond Hughes
  • Publication number: 20020193828
    Abstract: Endovascular filter (10) including a plurality of struts (14) with distal ends (18) adapted to anchor the filter to the vessel wall after deployment, such as by having barbs (20), the filter being adapted to be retrieved if desired. Strut distal ends (18) are coated with an antiproliferative agent (40) that inhibits the ingrowth of tissue around the filter, thereby permitting the filter to be retrieved and removed atraumatically after a prolonged period of time, thus extending the useful life of the retrievable filter. Optionally, the proximal end (22) of the filter may also be so coated, or the entire filter.
    Type: Application
    Filed: June 14, 2002
    Publication date: December 19, 2002
    Applicant: COOK INCORPORATED
    Inventors: Dennis Griffin, Arne Molgaard-Nielsen, Anthony O. Ragheb, Raymond B. Leonard