Patents by Inventor Dennis Hui

Dennis Hui has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190245650
    Abstract: A method in a node (110, 115) comprises generating (604) a plurality of constituent polar codes, each of the plurality of constituent polar codes having an associated block length and an associated set of information bits. The method comprises coupling (608) at least a portion of the sets of information bits associated with each of the plurality of constituent polar codes to generate a spatially coupled polar code. The method comprises encoding (612) a wireless transmission using the spatially coupled polar code.
    Type: Application
    Filed: September 29, 2017
    Publication date: August 8, 2019
    Inventors: Dennis HUI, Yufei BLANKENSHIP, Songnam Hong, Ivana MARIC
  • Patent number: 10367677
    Abstract: Methods and apparatus in a fifth-generation wireless communications network, including an example method, in a wireless device, that includes determining a reporting quality threshold for a parameter related to channel state information (CSI); performing a measurement for each of a plurality of beams from a first predetermined set of beams for evaluation; evaluating the measurement for each of the plurality of beams against the reporting quality threshold; discontinuing the performing and evaluating of measurements in response to determining that the reporting quality threshold is met for one of the beams, such that one or more beams in the first predetermined set of beams are not measured and evaluated; and reporting, to the wireless communications network, CSI for the one of the beams.
    Type: Grant
    Filed: May 13, 2016
    Date of Patent: July 30, 2019
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Stefan Parkvall, Janne Peisa, Gunnar Mildh, Robert Baldemair, Stefan Wager, Jonas Kronander, Karl Werner, Richard Abrahamsson, Ismet Aktas, Peter Alriksson, Junaid Ansari, Shehzad Ali Ashraf, Henrik Asplund, Fredrik Athley, Håkan Axelsson, Joakim Axmon, Johan Axnäs, Kumar Balachandran, Gunnar Bark, Jan-Erik Berg, Andreas Bergström, Håkan Björkegren, Nadia Brahmi, Cagatay Capar, Anders Carlsson, Andreas Cedergren, Mikael Coldrey, Icaro L. J. da Silva, Erik Dahlman, Ali El Essaili, Ulrika Engström, Mårten Ericson, Erik Eriksson, Mikael Fallgren, Rul Fan, Gabor Fodor, Pål Frenger, Jonas Fridén, Jonas Fröberg Olsson, Anders Furuskár, Johan Furuskog, Virgile Garcia, Ather Gattami, Fredrik Gunnarsson, Ulf Gustavsson, Bo Hagerman, Fredrik Harrysson, Ning He, Martin Hessler, Kimmo Hiltunen, Songnam Hong, Dennis Hui, Jörg Huschke, Tim Irnich, Sven Jacobsson, Niklas Jaldén, Simon Järmyr, Zhiyuan Jiang, Martin Johansson, Niklas Johansson, Du Ho Kang, Eleftherios Karipidis, Patrik Karlsson, Ali S. Khayrallah, Caner Kilinc, Göran N. Klang, Sara Landström, Christina Larsson, Gen Li, Bo Lincoln, Lars Lindbom, Robert Lindgren, Bengt Lindoff, Fredrik Lindqvist, Jinhua Liu, Thorsten Lohmar, Qianxi Lu, Lars Manholm, Ivana Maric, Jonas Medbo, Qingyu Miao, Reza Moosavi, Walter Müller, Elena Myhre, Johan Nilsson, Karl Norrman, Bengt-Erik Olsson, Torgny Palenius, Sven Petersson, Jose Luis Pradas, Mikael Prytz, Olav Queseth, Pradeepa Ramachandra, Edgar Ramos, Andres Reial, Thomas Rimhagen, Emil Ringh, Patrik Rugeland, Johan Rune, Joachim Sachs, Henrik Sahlin, Vidit Saxena, Nima Seifi, Yngve Selén, Eliane Semaan, Sachin Sharma, Cong Shi, Johan Sköld, Magnus Stattin, Anders Stjernman, Dennis Sundman, Lars Sundström, Miurel Isabel Tercero Vargas, Claes Tidestav, Sibel Tombaz, Johan Torsner, Hugo Tullberg, Jari Vikberg, Peter Von Wrycza, Thomas Walldeen, Anders Wallén, Pontus Wallentin, Hai Wang, Ke Wang Helmersson, Jianfeng Wang, Yi-Pin Eric Wang, Niclas Wiberg, Emma Wittenmark, Osman Nuri Can Yilmaz, Ali Zaidi, Zhan Zhang, Zhang Zhang, Yanil Zheng
  • Publication number: 20190229850
    Abstract: According to some embodiments, a method performed by a wireless device for polar encoding payload bits comprises: identifying payload bits of a data channel that have known values; placing a first subset of the known payload bits at input positions of a polar encoder that correspond to the earliest decoding bit positions of the polar encoder; placing a second subset of the known payload bits at input positions of the polar encoder that correspond to the least reliable decoding bit positions of the polar encoder after placement of the first subset of the known payload bits; and transmitting the polar encoded payload bits to a wireless receiver. The first subset of the known payload bits are placed in earliest decoding bit positions to improve early termination gain. The second subset of the known payload bits are placed in least reliable decoding bit positions to enhance error performance.
    Type: Application
    Filed: February 11, 2019
    Publication date: July 25, 2019
    Inventors: Dennis HUI, Yufei BLANKENSHIP, Anders WESSLÉN
  • Patent number: 10361747
    Abstract: A method of synchronizing transmission of signals from a network node to a receiver includes generating a synchronization signal transmission pattern in which transmission resources used for transmission of the synchronization signals in regularly spaced time intervals are changed in successive ones of the time intervals, and transmitting synchronization signals from the network node in accordance with the synchronization signal transmission pattern. Related network nodes and user equipment nodes are disclosed.
    Type: Grant
    Filed: October 24, 2014
    Date of Patent: July 23, 2019
    Assignee: Telefonaktiebolaget LM Ericsson (Publ)
    Inventors: Johan Axnäs, Kumar Balachandran, Dennis Hui
  • Publication number: 20190215049
    Abstract: According to certain embodiments, a method in a network node is provided for adaptive initial synchronization beam sweep transmission. The method includes transmitting a plurality of initial synchronization beams with at least two different beam sweep cycles. At least one beam sweep cycle is an exhaustive beam sweep cycle and at least one beam sweep cycle is an optimized beam sweep cycle. The exhaustive beam sweep cycle covers all of a serving area of the cell and the optimized beam sweep cycle covers a subset of the serving area.
    Type: Application
    Filed: July 28, 2017
    Publication date: July 11, 2019
    Inventors: Igor Moaco GUERREIRO, Johan AXNÃS, Robert BALDEMAIR, Dennis HUI, Eleftherios KARIPIDIS
  • Patent number: 10333560
    Abstract: A node (110, 115) receives (804) transmissions associated with a given set of information bits, wherein each of the transmissions use a different polar code and share one or more information bits of the given set of information bits. The node determines (808), at each of a plurality of polar decoders (505, 605) of the node, soft information for each information bit included in an associated one of the transmissions, wherein each of the plurality of polar decoders is associated with a different transmission of the transmissions. The node provides (812), from each polar decoder of the plurality to one or more other polar decoders of the plurality, the determined soft information for any information bits shared by their respective associated transmissions, and uses (816) the provided soft information in an iterative decoding process to decode one or more of the received transmissions.
    Type: Grant
    Filed: August 10, 2017
    Date of Patent: June 25, 2019
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Dennis Hui, Mattias Andersson, Yufei Blankenship, Ivana Maric
  • Patent number: 10313994
    Abstract: An access node, AN, may be configured to communicate wirelessly with a wireless device (WD). The AN can transmit a first synchronization signal block having a first format. The AN can also transmit a second synchronization signal block of a second format, the first synchronization signal block including a first format different from the format of the second synchronization signal block. The first synchronization signal block can include an extended primary synchronization signal block that can be used to synchronize disadvantaged user equipment (e.g., user equipment experiencing low signal-to-noise ratio).
    Type: Grant
    Filed: June 3, 2016
    Date of Patent: June 4, 2019
    Assignee: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL)
    Inventors: Kumar Balachandran, Johan Axnäs, Dennis Hui
  • Patent number: 10313161
    Abstract: The present disclosure presents a method performed in a first node in a wireless communication system, of accessing a shared channel for transmission from the first node to at least one second node. The method comprises the step of receiving, from a third node a pilot signal announcing reception in the third node, wherein the pilot signal comprises information enabling estimation of a channel response from the first node to the third node; estimating, using the pilot signal, a channel response from the first node to the third node and predicting, based on the estimated channel response, an interference level at the receiver of the third node of a directive transmission from the first node to the second node; and accessing the shared channel based on the predicted interference level.
    Type: Grant
    Filed: October 25, 2013
    Date of Patent: June 4, 2019
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Dennis Hui, Robert Baldemair, Jonas Kronander, Kumar Balachandran
  • Publication number: 20190158226
    Abstract: Systems and methods related to concatenated polar encoding with interleaving are disclosed. In some embodiments, a method of operation of a radio node to perform encoding of a plurality of data bits for transmission by the radio node comprises encoding a plurality of data bits using a linear encoder to provide a first plurality of coded bits, where the first plurality of coded bits comprises a plurality of parity bits and the plurality of data bits. The method further comprises interleaving the first plurality of coded bits in accordance with an interleaving mapping to provide a plurality of interleaved bits and encoding the plurality of interleaved bits using a polar encoder to provide a second plurality of coded bits to be transmitted by the radio node.
    Type: Application
    Filed: January 30, 2019
    Publication date: May 23, 2019
    Inventors: Dennis Hui, Yufei Blankenship
  • Publication number: 20190159151
    Abstract: The present disclosure relates to transmitting synchronization signals and in particular to so called beam sweep. In particular the disclosure relates to methods for providing synchronization using synchronization sequences that are transmitted at different points in time. The disclosure also relates to corresponding devices and computer programs. A method in a network node, for transmitting synchronization sequences of a synchronization signal to one or more receiving wireless devices, comprises determining multiple synchronization sequences, such that each synchronization sequence comprises a respective timing indication, whereby each synchronization sequence enables determination of a time of an event in a receiving wireless device and transmitting the synchronization sequences to the one or more wireless devices, at different points in time.
    Type: Application
    Filed: January 23, 2019
    Publication date: May 23, 2019
    Inventors: Johan Axnäs, Kumar Balachandran, Icaro L. J. da Silva, Dennis Hui, Andres Reial, Johan Rune, Henrik Sahlin
  • Publication number: 20190158219
    Abstract: The application relates to the adaption of the length of the cyclic redundancy check (CRC) code in the context of 3GPP NR. In 3GPP NR, the length of the uplink and downlink control information (UCI, DCI) significantly varies. Therefore, it is necessary to select a CRC code of appropriate size or length. Accordingly, a method (200) for use in a wireless transmitter comprises: determining an amount of data to transmit (212), determining a cyclic redundancy check (CRC) polynomial length based on the amount of data to transmit (214); encoding the data using a CRC of the determined polynomial length (216); and transmitting the encoded data (216). The data to transmit may not only comprise control channel data but also user data and may be encoded with a Polar code or a low-density parity check (LPDC) code.
    Type: Application
    Filed: January 17, 2019
    Publication date: May 23, 2019
    Inventors: Yufei Blankenship, Dennis HUI, Sara SANDBERG
  • Publication number: 20190149176
    Abstract: Methods are proposed herein to perform rate matching for polar codes via circular buffering of the polar encoded bits. Embodiments are directed to methods of operation of a transmitting node in a wireless system including performing polar encoding of a set of information bits in accordance with a polar sequence of length NB to thereby generate NB coded bits. The method can further include interleaving the coded bits to thereby provide an interleaved coded bit sequence, and storing the interleaved coded bit sequence into a circular buffer of length NB. According to certain embodiments, the method can further include extracting N coded bits for transmission from the circular buffer. N can be greater than, equal to, or less than NB.
    Type: Application
    Filed: January 11, 2019
    Publication date: May 16, 2019
    Inventors: Dennis Hui, Yufei Blankenship
  • Publication number: 20190140790
    Abstract: A method for configuring a cluster for a terminal device in a wireless network. The method is performed at a network node, such as a base station or a radio network controller. The terminal device can establish at least two concurrent connections to at least one network node in the cluster. The method comprises dynamically adjusting a configuration of the cluster and informing the terminal device of the adjusted configuration so that connectivity of the terminal device in the cluster is adapted to the adjusted configuration. Correspondingly, there is also provided an apparatus embodied at or as at least part of the network node.
    Type: Application
    Filed: January 7, 2019
    Publication date: May 9, 2019
    Inventors: Qingyu MIAO, Qianxi LU, Rui FAN, Zhang ZHANG, Dennis HUI
  • Patent number: 10284403
    Abstract: A method performed by a communication node for transmission of a signal according to a single- or multiple carrier modulation scheme in a wireless communications network. The communication node modulates at least a first part of the signal into at least a first symbol with a shorter duration than a complete symbol according to the modulation scheme. The communication node modulates at least a second part of the signal into at least a second symbol with a shorter duration than a complete symbol according to the modulation scheme. The duration of the at least first and second symbols are equal to the duration of a complete symbol according to the carrier modulation scheme. Then, the communication node transmits the at least first and second symbol as a complete symbol according to the modulation scheme without time domain separation.
    Type: Grant
    Filed: October 30, 2015
    Date of Patent: May 7, 2019
    Assignee: Telefonaktiebolaget LM Ericsson (Publ)
    Inventors: Johan Axnäs, Kumar Balachandran, Dennis Hui
  • Patent number: 10257824
    Abstract: The present disclosure generally relates to the field of resource allocation. More specifically, the present disclosure relates to a technique of allocating communication resources in a wireless communication network. The wireless communication network comprises a plurality of access nodes, each of the plurality of access nodes being connected to one or more of the plurality of access nodes via one or more links to provide a plurality of routes for routing data through the wireless communication network. A method embodiment comprises the step of receiving, for one or more links (180, 182) of at least one access node (100) of the plurality of access nodes, allocation information. The allocation information indicates how available communication resources are to be allocated.
    Type: Grant
    Filed: January 21, 2014
    Date of Patent: April 9, 2019
    Assignee: Telefonaktiebolaget LM Ericsson (Publ)
    Inventors: Jonas Kronander, Johan Axnäs, Robert Baldemair, Dennis Hui, Zhan Zhang
  • Patent number: 10251140
    Abstract: In one aspect of the teachings herein, a radio network node advantageously adapts the transmission duration of a synchronization signal with respect to transmission of the synchronization signal in different directions. For example, the radio network node uses a shorter transmission duration in beam directions that are associated with better reception conditions and a longer transmission duration in beam directions that are associated with poorer reception conditions. As a consequence of varying the transmission duration according to received-signal qualities known or expected for the different directions, the radio network node can shorten the overall time needed to complete one synchronization-signal transmission cycle and use less energy, as compared to using a more conservative, longer transmission time in all beam directions.
    Type: Grant
    Filed: February 26, 2016
    Date of Patent: April 2, 2019
    Assignee: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL)
    Inventors: Johan Axnäs, Robert Baldemair, Igor Moaco Guerreiro, Dennis Hui, Eleftherios Karipidis
  • Publication number: 20190098671
    Abstract: An example method in a user equipment comprises generating a random access preamble signal and transmitting the random access preamble signal. This generating of the random access preamble signal comprises generating a random access preamble signal comprising two or more consecutive preamble symbol groups, each preamble symbol group comprising a cyclic prefix portion and a plurality of identical symbols occupying a single subcarrier of the random access preamble signal. The single subcarrier for at least one of the preamble symbol groups corresponds to a first subcarrier frequency and the single subcarrier for an immediately subsequent one of the preamble symbol groups corresponds to a second subcarrier frequency.
    Type: Application
    Filed: November 28, 2018
    Publication date: March 28, 2019
    Inventors: Xingqin Lin, Ansuman Adhikary, Asbjörn Grövlen, Dennis Hui, Niklas Johansson, Yutao Sui, Mårten Sundberg, Yi-Pin Eric Wang
  • Patent number: 10182449
    Abstract: A scheduling node (600), a transmitting node (602), a receiving node (604), and methods therein, for communication of data on a shared radio resource. The scheduling node (600) divides wireless devices into multiple groups, and assigns group-specific rotation angles to the groups so that the transmitting node (602) should apply a group-specific rotation angle when transmitting data to or from a wireless device in the corresponding group. In addition, a repetition factor is assigned to each wireless device such that the data is repeated consecutively according to the repetition factor, before transmission. The repetition factor may correspond to the number of groups.
    Type: Grant
    Filed: May 4, 2016
    Date of Patent: January 15, 2019
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Miguel Lopez, Dennis Hui, Henrik Sahlin
  • Patent number: 10177886
    Abstract: A method for configuring a cluster for a terminal device in a wireless network. The method is performed at a network node, such as a base station or a radio network controller. The terminal device can establish at least two concurrent connections to at least one network node in the cluster. The method comprises dynamically adjusting a configuration of the cluster and informing the terminal device of the adjusted configuration so that connectivity of the terminal device in the cluster is adapted to the adjusted configuration. Correspondingly, there is also provided an apparatus embodied at or as at least part of the network node.
    Type: Grant
    Filed: November 30, 2015
    Date of Patent: January 8, 2019
    Assignee: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL)
    Inventors: Qingyu Miao, Qianxi Lu, Rui Fan, Zhang Zhang, Dennis Hui
  • Patent number: 10172163
    Abstract: An example method in a user equipment comprises generating a random access preamble signal and transmitting the random access preamble signal. This generating of the random access preamble signal comprises generating a Single-Carrier Frequency-Division Multiple Access (SC-FDMA) random access preamble signal comprising two or more consecutive preamble symbol groups, each preamble symbol group comprising a cyclic prefix portion and a plurality of identical symbols occupying a single subcarrier of the SC-FDMA random access preamble signal. The single subcarrier for at least one of the preamble symbol groups corresponds to a first subcarrier frequency and the single subcarrier for an immediately subsequent one of the preamble symbol groups corresponds to a second subcarrier frequency.
    Type: Grant
    Filed: July 10, 2017
    Date of Patent: January 1, 2019
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Xingqin Lin, Ansuman Adhikary, Asbjörn Grövlen, Dennis Hui, Niklas Johansson, Yutao Sui, Mårten Sundberg, Yi-Pin Eric Wang