Patents by Inventor Dennis J. Sinitsky

Dennis J. Sinitsky has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7091543
    Abstract: A new method to form DRAM cells in an integrated circuit device is achieved. The method comprises providing a substrate. A plurality of STI regions is formed in the substrate. The STI regions comprise trenches in the substrate. The trenches are filled with a first dielectric layer. All of the first dielectric layer is etched away from a first group of the STI regions to form open trenches while leaving the first dielectric layer in a second group of the STI regions. A second dielectric layer is formed overlying the substrate and lining the open trenches. A conductive layer is deposited overlying the second dielectric layer and completely filling the open trenches. The conductive layer is patterned to define DRAM transistor gates and to define DRAM capacitor top plates. Thereafter, ions are implanted into the substrate to form source and drain regions for the transistors.
    Type: Grant
    Filed: August 18, 2004
    Date of Patent: August 15, 2006
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Kuo-Chyuan Tzeng, Ming-Hsiang Chiang, Wen-Chuan Chiang, Dennis J. Sinitsky
  • Patent number: 6794254
    Abstract: A new method to form DRAM cells in an integrated circuit device is achieved. The method comprises providing a substrate. A plurality of STI regions is formed in the substrate. The STI regions comprise trenches in the substrate. The trenches are filled with a first dielectric layer. All of the first dielectric layer is etched away from a first group of the STI regions to form open trenches while leaving the first dielectric layer in a second group of the STI regions. A second dielectric layer is formed overlying the substrate and lining the open trenches. A conductive layer is deposited overlying the second dielectric layer and completely filling the open trenches. The conductive layer is patterned to define DRAM transistor gates and to define DRAM capacitor top plates. Thereafter, ions are implanted into the substrate to form source and drain regions for the transistors.
    Type: Grant
    Filed: May 15, 2003
    Date of Patent: September 21, 2004
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Kuo-Chyuan Tzeng, Ming-Hsiang Chiang, Wen-Chuan Chiang, Dennis J. Sinitsky
  • Patent number: 6670664
    Abstract: A random access memory cell and a method for fabrication thereof provide a field effect transistor device laterally adjoining a metal oxide semiconductor capacitor device, each formed within an active region of a semiconductor substrate. Within the random access memory cell and method: (1) a single fluorinated silicon oxide layer of a single thickness serves as both a gate dielectric layer within the field effect transistor device and a capacitor dielectric layer within the metal oxide semiconductor capacitor device; and (2) a channel region within the field effect transistor device has a different threshold voltage adjusting dopant concentration in comparison with a semiconductor plate region within the metal oxide semiconductor capacitor device. The random access memory cell is fabricated with enhanced performance.
    Type: Grant
    Filed: October 22, 2002
    Date of Patent: December 30, 2003
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Kuo-Chyuan Tzeng, Dennis J. Sinitsky, Chen-Jong Wang, Wen-Chaun Chiang
  • Patent number: 6620679
    Abstract: A high performance 1T RAM cell in a system-on-a-chip is formed using an asymmetric LDD structure that improves pass gate performance and storage node junction leakage. The asymmetric LDD structure is formed using selective ion implantation of the core and I/O LDDs. The node junctions are both pocket implant-free and source/drain implant-free. Further, silicide formation is avoided within the storage node junctions by forming nearly merged sidewall spacers within the node junctions and by forming optional blocking portions over the nearly merged sidewall spacers.
    Type: Grant
    Filed: August 20, 2002
    Date of Patent: September 16, 2003
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Kuo-Chyuan Tzeng, Chen-Jong Wang, Dennis J. Sinitsky
  • Patent number: 6538287
    Abstract: A method for fabricating stacked DRAM capacitors and FET structures for embedded circuits is achieved. The polysilicon capacitor bottom electrodes are formed first on the substrate in the memory regions. A single thin dielectric layer is formed over the bottom electrodes to serve as the interelectrode layer and concurrently on the device areas in the logic regions for the FET gate oxide. A second polysilicon layer is deposited and patterned to form the capacitor top electrodes and concurrently to form the FET gate electrodes. Next the lightly doped drains and source/drain contact areas are implanted to form FETs. Since the source/drain areas are formed after the DRAM capacitors are completed, the high-temperature thermal cycles for the DRAM capacitors are avoided. Therefore the FETs having shallow diffused junctions are formed without thermal degradation. The method also uses fewer processing steps to achieve these novel merged DRAM structures.
    Type: Grant
    Filed: January 14, 2002
    Date of Patent: March 25, 2003
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Chen-Jong Wang, Dennis J. Sinitsky
  • Publication number: 20020068401
    Abstract: A method for fabricating stacked DRAM capacitors and FET structures for embedded circuits is achieved. The polysilicon capacitor bottom electrodes are formed first on the substrate in the memory regions. A single thin dielectric layer is formed over the bottom electrodes to serve as the interelectrode layer and concurrently on the device areas in the logic regions for the FET gate oxide. A second polysilicon layer is deposited and patterned to form the capacitor top electrodes and concurrently to form the FET gate electrodes. Next the lightly doped drains and source/drain contact areas are implanted to form FETs. Since the source/drain areas are formed after the DRAM capacitors are completed, the high-temperature thermal cycles for the DRAM capacitors are avoided. Therefore the FETs having shallow diffused junctions are formed without thermal degradation. The method also uses fewer processing steps to achieve these novel merged DRAM structures.
    Type: Application
    Filed: January 14, 2002
    Publication date: June 6, 2002
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY
    Inventors: Chen-Jong Wang, Dennis J. Sinitsky
  • Patent number: 6362041
    Abstract: A method for fabricating stacked DRAM capacitors and FET structures for embedded circuits is achieved. The polysilicon capacitor bottom electrodes are formed first on the substrate in the memory regions. A single thin dielectric layer is formed over the bottom electrodes to serve as the interelectrode layer and concurrently on the device areas in the logic regions for the FET gate oxide. A second polysilicon layer is deposited and patterned to form the capacitor top electrodes and concurrently to form the FET gate electrodes. Next the lightly doped drains and source/drain contact areas are implanted to form FETs. Since the source/drain areas are formed after the DRAM capacitors are completed, the high-temperature thermal cycles for the DRAM capacitors are avoided. Therefore the FETs having shallow diffused junctions are formed without thermal degradation. The method also uses fewer processing steps to achieve these novel merged DRAM structures.
    Type: Grant
    Filed: June 19, 2000
    Date of Patent: March 26, 2002
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Chen-Jong Wang, Dennis J. Sinitsky