Patents by Inventor Dennis L. Krause

Dennis L. Krause has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6560811
    Abstract: A compact optical fiber cleaning apparatus includes a base plate and a retaining plate having a plurality of apertures. The base plate is configured to hold one or more resilient absorbers situated under the retaining plate. In operation, a wiper, such as a piece of lint-free cloth, is placed over the absorber and the retainer is closed. When closed, the plurality of apertures within the retainer allow wiper material to be forced through the apertures by the resilient absorber material. Each section of exposed wiper may be employed for a different cleaning purpose. For example, a solvent may be applied to one exposed section of the wiper, or to the underlying absorber material, with another exposed section of the wiper left dry. A technician may then clean an optical fiber endface, by first wiping the endface on the “wet” section of wiper material, then wiping the endface on the “dry” section of wiper material.
    Type: Grant
    Filed: August 14, 2000
    Date of Patent: May 13, 2003
    Assignee: Lucent Technologies Inc.
    Inventors: Dennis L Krause, Elaine Fontes Parnagian
  • Patent number: 5622895
    Abstract: Multilayer circuit devices include a plurality of metallized patterns thereon, said patterns being separated by a polymeric dielectric film. The various metallized patterns are interconnected by means of microvias through the polymeric film or films. Each of the metallizations is a composite including in succession from the substrate or from the polymeric film, a layer of titanium (Ti), a layer of titanium and palladium alloy (Ti/Pd), a layer of copper (Cu), and a layer of titanium and palladium alloy (Ti/Pd). The Ti-Ti/Pd-Cu-Ti/Pd composite is hereinafter referred to as TCT. The adhesion between the polymeric film and the top Ti/Pd layer is better than that between the polymer and gold (Au) and comparable to that between the polymer and an adhesion promoted Au layer. Use of the TCT metallization also results in additional cost reduction due to the elimination of Ni and Au layers on top of the Cu layer.
    Type: Grant
    Filed: August 4, 1995
    Date of Patent: April 22, 1997
    Assignee: Lucent Technologies Inc.
    Inventors: Aaron L. Frank, Ajibola O. Ibidunni, Douglas B. Johnson, Dennis L. Krause, Trac Nguyen
  • Patent number: 5466972
    Abstract: Multilayer circuit devices include a plurality of metallized patterns thereon, said patterns being separated by a polymeric dielectric film. The various metallized patterns are interconnected by means of microvias through the polymeric film or films. Each of the metallizations is a composite including in succession from the substrate or from the polymeric film, a layer of titanium (Ti), a layer of titanium and palladium alloy (Ti/Pd), a layer of copper (Cu), and a layer of titanium and palladium alloy (Ti/Pd). The Ti--Ti/Pd--Cu--Ti/Pd composite is hereinafter referred to as TCT. The adhesion between the polymeric film and the top Ti/Pd layer is better than that between the polymer and gold (Au) and comparable to that between the polymer and an adhesion promoted Au layer. Use of the TCT metallization also results in additional cost reduction due to the elimination of Ni and Au layers on top of the Cu layer.
    Type: Grant
    Filed: May 9, 1994
    Date of Patent: November 14, 1995
    Assignee: AT&T Corp.
    Inventors: Aaron L. Frank, Ajibola O. Ibidunni, Douglas B. Johnson, Dennis L. Krause, Trac Nguyen
  • Patent number: 5441614
    Abstract: A magnetron sputtering apparatus is disclosed having a cooling block including an inner conduit. A target is provided having first and second grooves in a first surface thereof. At least a portion of the first surface of the target is in contact with a first surface of the cooling block. A first pole piece is positioned within the first groove, and a second pole piece is positioned within the second groove. A first magnet is provided having a first polarity in contact with the first pole piece. A second magnet is provided having the opposite polarity of the first magnet in contact with the second pole piece. A plate is provided in contact with a second surface of the cooling block and the first and second magnets. Means are provided for supplying a coolant to the inner conduit of the cooling block and for applying a voltage to the cooling block. The first and second pole pieces conduct a magnetic flux produced by the first and second magnets towards an opposite second surface of the target.
    Type: Grant
    Filed: November 30, 1994
    Date of Patent: August 15, 1995
    Assignee: AT&T Corp.
    Inventors: Dennis L. Krause, David C. Wojewoda
  • Patent number: 5356526
    Abstract: A new metallization is described which is a composite of subsequent metal layers beginning with a layer of titanium and having in an ascending order the following composition: Ti--TiPd--Cu--Ni--Au. TiPd is an alloy of titanium and palladium containing from 0.3 to 14 weight percent Pd, by the weight of the alloy. The TiPd alloy is etchable in an aqueous HF solution containing from 0.5 to 2.0 and higher, preferably from 0.5 to 1.2 weight percent HF. The use of the TiPd alloy avoids the occurrence of Pd residues remaining after the etching of Ti layer and lift-off (rejection etching) of Pd layer in a prior art Ti--Pd--Cu--Ni--Au metallization. Ti and TiPd layers are present in a thickness ranging from 100 to 300 nm and from 50 to 300 nm, respectively, and in a total minimum thickness needed to maintain bonding characteristics of the metallization.
    Type: Grant
    Filed: October 20, 1993
    Date of Patent: October 18, 1994
    Assignee: AT&T Bell Laboratories
    Inventors: Robert P. Frankenthal, Ajibola O. Ibidunni, Dennis L. Krause
  • Patent number: 5288951
    Abstract: A new metanization is described which is a composite of subsequent metal layers beginning with a layer of titanium and having in an ascending order the following composition: Ti - TiPd - Cu - Ni - Au. TiPd is an alloy of titanium and palladium containing from 0.3 to 14 weight percent Pd, by the weight of the alloy. The TiPd alloy is etchable in an aqueous BF solution containing from 0.5 to 2.0 and higher, preferably from 0.5 to 1.2 weight percent BF. The use of the TiPd alloy avoids the occurrence of Pd residues remaining after the etching of Ti layer and liftoff (rejection etching) of Pd layer in a prior art Ti-Pd-Cu-Ni-Au metanization. Ti and TiPd layers are present in a thickness ranging from 100 to 300 nm and from 50 to 300 nm, respectively, and in a total minimum thickness needed to maintain bonding characteristics of the metallization.
    Type: Grant
    Filed: October 30, 1992
    Date of Patent: February 22, 1994
    Assignee: AT&T Bell Laboratories
    Inventors: Robert P. Frankenthal, Ajibola O. Ibidunni, Dennis L. Krause
  • Patent number: 5196400
    Abstract: A target which is a good conductor of heat and electricity is plasma sprayed with a weakly conducting material such as a metallic oxide. The target is then employed in a magnetron sputtering apparatus to sputter the material sprayed onto the target onto a substrate. The technique permits use of power densities and target sizes and shapes which are advantageous for sputtering substrates having large surface areas.
    Type: Grant
    Filed: August 17, 1990
    Date of Patent: March 23, 1993
    Assignee: AT&T Bell Laboratories
    Inventors: Chiou T. Chen, Dennis L. Krause
  • Patent number: 4539434
    Abstract: An electrical substrate circuit device (10) includes a thick film crossunder conductor (14) and a thin film crossover conductor (16). An intermediate portion of the thick film conductor (14) is covered with a coating (28) of electrically insulating glaze material and opposite end portions (18) of the thick film conductor are electrically connected to thin film contact pads (20) by electrically conductive contact portions (22) in an electrically insulating protective tantalum pentoxide film layer (24). The electrically conductive contact portions (22) are produced by gold material in the end portions (18) of the thick film conductor (14) diffusing into overlying portions of a tantalum film (30) as the tantalum film is converted to the protective tantalum pentoxide film layer (24) by thermal oxidation.
    Type: Grant
    Filed: July 14, 1983
    Date of Patent: September 3, 1985
    Assignee: AT&T Technologies, Inc.
    Inventor: Dennis L. Krause
  • Patent number: 4491509
    Abstract: An argon-nitrogen sputtering gas mixture is introduced into a cylindrical sputtering chamber (20) at essentially the geometric center of the chamber. The gas mixture then disperses through open areas in the chamber about upper and lower edges of a cylindrical tantalum target (24) and homogeneously into a sputtering area (30) between the target and a plurality of substrates (12) on a rotatable carrousel (28). As tantalum material then is sputtered from the target onto the substrates (12), tantalum films (16), which are uniformly doped with nitrogen, are formed on the substrates. A target cooling cell assembly (26), comprising a pair of C-shaped cooling cells (92) having independent cooling water input-and-return systems (95), provides improved cooling of the target during the sputtering operation.
    Type: Grant
    Filed: March 9, 1984
    Date of Patent: January 1, 1985
    Assignee: AT&T Technologies, Inc.
    Inventor: Dennis L. Krause