Patents by Inventor Dennis L. Youchison

Dennis L. Youchison has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230207142
    Abstract: A nuclear fuel element is provided. The nuclear fuel element includes a porous support. The porous support includes a ligament and defines a pore adjacent to the ligament. The ligament has an interior surface spaced from the pore. The interior surface defines a void. The porous support includes silicon carbide. The nuclear fuel element includes a nuclear fuel material disposed in the pore. The nuclear fuel material includes a moderator and tri-structural isotropic (TRISO) particles. Another nuclear fuel element is provided. The nuclear fuel element includes a porous support. The porous support includes a ligament and defines a pore adjacent to the ligament. The ligament has an interior surface spaced from the pore. The interior surface defines a void. The ligament includes the nuclear fuel material. The nuclear fuel element includes a facesheet overlying the porous support and defines a hole. The hole is in fluid communication with the void. The nuclear fuel material includes a nuclear fuel.
    Type: Application
    Filed: March 7, 2023
    Publication date: June 29, 2023
    Inventors: Dennis L. Youchison, Brian Williams
  • Patent number: 11209219
    Abstract: A heat exchanger is disclosed that includes a cold heat exchange zone including a foam material having an annular geometry and having fluid distribution and collection slots configured to distribute a cooling fluid circumferentially through the foam material.
    Type: Grant
    Filed: September 11, 2013
    Date of Patent: December 28, 2021
    Assignee: National Technology & Engineering Solutions of Sandia, LLC
    Inventor: Dennis L. Youchison
  • Publication number: 20210098138
    Abstract: A nuclear fuel element is provided. The nuclear fuel element includes a porous support. The porous support includes a ligament and defines a pore adjacent to the ligament. The ligament has an interior surface spaced from the pore. The interior surface defines a void. The porous support includes silicon carbide. The nuclear fuel element includes a nuclear fuel material disposed in the pore. The nuclear fuel material includes a moderator and tri-structural isotropic (TRISO) particles. Another nuclear fuel element is provided. The nuclear fuel element includes a porous support. The porous support includes a ligament and defines a pore adjacent to the ligament. The ligament has an interior surface spaced from the pore. The interior surface defines a void. The ligament includes the nuclear fuel material. The nuclear fuel element includes a facesheet overlying the porous support and defines a hole. The hole is in fluid communication with the void. The nuclear fuel material includes a nuclear fuel.
    Type: Application
    Filed: October 1, 2020
    Publication date: April 1, 2021
    Inventors: Dennis L. Youchison, Brian Williams
  • Patent number: 8920871
    Abstract: Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.
    Type: Grant
    Filed: August 27, 2013
    Date of Patent: December 30, 2014
    Assignee: Sandia Corporation
    Inventors: Dennis L. Youchison, Brian E. Williams, Robert E. Benander
  • Patent number: 8526566
    Abstract: Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.
    Type: Grant
    Filed: August 5, 2010
    Date of Patent: September 3, 2013
    Assignee: Sandia Corporation
    Inventors: Dennis L. Youchison, Brian E. Williams, Robert E. Benander
  • Patent number: 7899146
    Abstract: Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.
    Type: Grant
    Filed: June 29, 2004
    Date of Patent: March 1, 2011
    Assignee: Sandia Corporation
    Inventors: Dennis L. Youchison, Brian E. Williams, Robert E. Benander
  • Patent number: 7838083
    Abstract: Methods and apparatus for depositing thermal barrier coatings on gas turbine blades and vanes using Electron Beam Physical Vapor Deposition (EBPVD) combined with Ion Beam Assisted Deposition (IBAD).
    Type: Grant
    Filed: January 28, 2006
    Date of Patent: November 23, 2010
    Assignee: Sandia Corporation
    Inventors: Dennis L. Youchison, Jimmie M. McDonald, Thomas J. Lutz, Michail A. Gallis
  • Patent number: 7666463
    Abstract: Methods for manufacturing porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's). Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, a thin coating of nuclear fuel may be deposited inside of a highly porous skeletal structure made, for example, of reticulated vitreous carbon foam.
    Type: Grant
    Filed: May 17, 2006
    Date of Patent: February 23, 2010
    Assignee: Sandia Corporation
    Inventors: Dennis L. Youchison, Brian E. Williams, Robert E. Benander